We investigate the vibrational amplitudes and the degree of the phonon localization in 19 ice forms, both crystalline and amorphous, by a quasi-harmonic approximation with a reliable classical intermolecular interaction model for water. The amplitude in the low pressure ices increases with compression, while the opposite trend is observed in the medium and high pressure ices. The amplitude of the oxygen atom does not differ from that of hydrogen in low pressure ices apart from the contribution from the zero-point vibrations. This is accounted for by the coherent but opposite phase motions in the mixed translational and rotational vibrations. A decoupling of translation-dominant and rotation-dominant motions significantly reduces the vibrational amplitudes in any ice form. The amplitudes in ice III are found to be much larger than any other crystalline ice form. In order to investigate the vibrational mode characteristics, the moment ratio of the atomic displacements for individual phonon modes, called the inverse participation ratio, is calculated and the degree of the phonon localization in crystalline and amorphous ices is discussed. It is found that the phonon modes in the hydrogen-ordered ice forms are remarkably spread over the entire crystal having propagative or diffusive characteristic, while many localized modes appear at the edges of the vibrational bands, called dissipative modes, in the hydrogen-disordered counterparts. The degree of localization is little pronounced in low density amorphous and high density amorphous due to disordering of oxygen atoms.

1.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
Oxford
,
1999
).
2.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
,
Science
311
,
1758
(
2006
).
3.
C. G.
Salzmann
,
P. G.
Radaelli
,
E.
Mayer
, and
J. L.
Finney
,
Phys. Rev. Lett.
103
,
105701
(
2009
).
4.
A.
Falenty
,
T. C.
Hansen
, and
W. F.
Kuhs
,
Nature
516
,
231
(
2014
).
5.
L.
Del Rosso
,
M.
Celli
, and
L.
Ulivi
,
Nat. Commun.
7
,
13394
(
2016
).
6.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
(
2012
).
8.
L.
del Rosso
,
M.
Celli
,
F.
Grazzi
,
M.
Catti
,
T. C.
Hansen
,
A. D.
Fortes
, and
L.
Ulivi
, “
Cubic ice Ic without stacking defects obtained from ice XVII
,”
Nature
(published online,
2020
).
9.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
314
,
76
(
1985
).
10.
11.
P. H.
Poole
,
F.
Sciortino
,
U.
Essmann
, and
H. E.
Stanley
,
Nature
360
,
324
(
1992
).
12.
P.
Gallo
,
F.
Sciortino
,
P.
Tartaglia
, and
S. H.
Chen
,
Phys. Rev. Lett.
76
,
2730
(
1996
).
13.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
14.
M.
Yamada
,
S.
Mossa
,
H. E.
Stanley
, and
F.
Sciortino
,
Phys. Rev. Lett.
88
,
195701
(
2002
).
15.
J. C.
Palmer
,
P. H.
Poole
,
F.
Sciortino
, and
P. G.
Debenedetti
,
Chem. Rev.
118
,
9129
(
2018
).
16.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature
310
,
393
(
1984
).
17.
C. A.
Tulk
,
J. J.
Molaison
,
A. R.
Makhluf
,
C. E.
Manning
, and
D. D.
Klug
,
Nature
569
,
542
(
2019
).
18.
I.
Okabe
,
H.
Tanaka
, and
K.
Nakanishi
,
Phys. Rev. E
53
,
2638
(
1996
).
19.
20.
H.
Tanaka
,
Phys. Rev. Lett.
80
,
113
(
1998
).
21.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
Phys. Rev. E
89
,
020301
(
2014
).
22.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
Phys. Rev. Lett.
115
,
197801
(
2015
).
23.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
J. Chem. Phys.
150
,
214504
(
2019
).
24.
H.
Tanaka
,
T.
Yagasaki
, and
M.
Matsumoto
,
J. Chem. Phys.
151
,
114501
(
2019
).
25.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Hold Rinehart & Winston
,
New York
,
1976
).
26.
A. J.
Leadbetter
and
M.
Blackman
,
Proc. R. Soc. London, Ser. A
287
,
403
(
1965
).
27.
F. A.
Lindemann
,
Z. Phys.
11
,
609
(
1910
).
29.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
30.
P. A.
Lee
and
T. V.
Ramakrishnan
,
Rev. Mod. Phys.
57
,
287
(
1985
).
31.
32.
R. J.
Bell
,
Rep. Prog. Phys.
35
,
1315
(
1972
).
33.
S. R.
Nagel
,
A.
Rahman
, and
G. S.
Grest
,
Phys. Rev. Lett.
47
,
1665
(
1981
).
34.
H.
Tanaka
and
I.
Ohmine
,
J. Chem. Phys.
91
,
6318
(
1989
).
35.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R. M.
Stratt
,
J. Chem. Phys.
100
,
6672
(
1994
).
36.
S.
Pailhès
,
H.
Euchner
,
V. M.
Giordano
,
R.
Debord
,
A.
Assy
,
S.
Gomès
,
A.
Bosak
,
D.
Machon
,
S.
Paschen
, and
M.
de Boissieu
,
Phys. Rev. Lett.
113
,
025506
(
2014
).
37.
P.
Norouzzadeh
,
C. W.
Myles
, and
D.
Vashaee
,
Phys. Rev. B
95
,
195206
(
2017
).
38.
39.
T.
Nakamura
,
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
J. Phys. Chem. B
120
,
1843
(
2016
).
40.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
41.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
42.
M. M.
Conde
,
M. A.
Gonzalez
,
J. L.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
139
,
154505
(
2013
).
43.
M. M.
Conde
,
C.
Vega
,
G. A.
Tribello
, and
B.
Slater
,
J. Chem. Phys.
131
,
034510
(
2009
).
44.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Phys. Chem. B
122
,
7718
(
2018
).
45.
T.
Matsui
,
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Chem. Phys.
150
,
041102
(
2019
).
46.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
,
J. Chem. Phys.
122
,
234511
(
2005
).
47.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
,
J. Comput. Chem.
39
,
61
(
2018
).
48.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
49.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
J. Chem. Phys.
112
,
7169
(
2000
).
50.
K.
Rottger
,
A.
Endriss
,
J.
Ihringer
,
S.
Doyle
, and
W. F.
Kuhs
,
Acta Crystallographica Section B
68
,
91
(
2012
).
51.
C. M. B.
Line
and
R. W.
Whitworth
,
J. Chem. Phys.
104
,
10008
(
1996
).
52.
W. F.
Kuhs
,
D. V.
Bliss
, and
J. L.
Finney
,
J. Phys. Colloques
48
,
C1
(
1987
).
53.
B.
Kamb
,
Acta Crystallogr.
17
,
1437
(
1964
).
54.
J. D.
Londono
,
W. F.
Kuhs
, and
J. L.
Finney
,
J. Chem. Phys.
98
,
4878
(
1993
).
55.
H.
Engelhardt
and
B.
Kamb
,
J. Chem. Phys.
75
,
5887
(
1981
).
56.
B.
Kamb
,
A.
Prakash
, and
C.
Knobler
,
Acta Crystallogr.
22
,
706
(
1967
).
57.
W. F.
Kuhs
,
J. L.
Finney
,
C.
Vettier
, and
D. V.
Bliss
,
J. Chem. Phys.
81
,
3612
(
1984
).
58.
C.
Lobban
,
J. L.
Finney
, and
W. F.
Kuhs
,
Nature
391
,
268
(
1998
).
59.
T.
Yagasaki
,
M.
Yamasaki
,
M.
Matsumoto
, and
H.
Tanaka
,
J. Chem. Phys.
151
,
064702
(
2019
).
60.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
61.
D.
Van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
62.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
63.
I.
Ohmine
and
H.
Tanaka
,
Chem. Rev.
93
,
2545
(
1993
).
64.
A.
Bizid
,
L.
Bosio
,
A.
Defrain
, and
M.
Oumezzine
,
J. Chem. Phys.
87
,
2225
(
1987
).
65.
A.
Pohorille
,
L. R.
Pratt
,
R. A.
LaViolette
,
M. A.
Wilson
, and
R. D.
MacElroy
,
J. Chem. Phys.
87
,
6070
(
1987
).
66.
L.
Pauling
,
J. Am. Chem. Soc.
57
,
2680
(
1935
).
67.
L. I.
Schiff
,
Quantum Mechanics
, 3rd ed. (
McGraw-Hill
,
San Francisco
,
1968
).
68.
M. S.
Shell
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
J. Phys.: Condens. Matter
17
,
S4035
(
2005
).
69.
H. J.
Prask
,
S. F.
Trevino
,
J. D.
Gault
, and
K. W.
Logan
,
J. Chem. Phys.
56
,
3217
(
1972
).
70.
W. F.
Kuhs
and
M. S.
Lehmann
,
J. Phys. Chem.
87
,
4312
(
1983
).
71.
H. Y.
Playford
,
T. F.
Whale
,
B. J.
Murray
,
M. G.
Tucker
, and
C. G.
Salzmann
,
J. Appl. Crystallogr.
51
,
1211
(
2018
).
72.
B.
Wehinger
,
D.
Chernyshov
,
M.
Krisch
,
S.
Bulat
,
V.
Ezhov
, and
A.
Bosak
,
J. Phys.: Condens. Matter
26
,
265401
(
2014
).
73.
T. F.
Whale
,
S. J.
Clark
,
J. L.
Finney
, and
C. G.
Salzmann
,
J. Raman Spectrosc.
44
,
290
(
2013
).
74.
Y.
Gu
,
X.-L.
Zhu
,
L.
Jiang
,
J.-W.
Cao
,
X.-L.
Qin
,
S.-K.
Yao
, and
P.
Zhang
,
J. Phys. Chem. C
123
,
14880
(
2019
).
75.
H.
Tanaka
and
U.
Mohanty
,
J. Am. Chem. Soc.
124
,
8085
(
2002
).
76.
C. P.
Herrero
and
R.
Ramirez
,
J. Chem. Phys.
134
,
094510
(
2011
).
77.
B.
Pamuk
,
J. M.
Soler
,
R.
Ramírez
,
C. P.
Herrero
,
P. W.
Stephens
,
P. B.
Allen
, and
M. V.
Fernández-Serra
,
Phys. Rev. Lett.
108
,
193003
(
2012
).
78.
Y.
Takii
,
K.
Koga
, and
H.
Tanaka
,
J. Chem. Phys.
128
,
204501
(
2008
).
79.
J. L.
Aragones
and
C.
Vega
,
J. Chem. Phys.
130
,
244504
(
2009
).
80.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
81.
J.
Li
,
J. Chem. Phys.
105
,
6733
(
1996
).
82.
S.
Klotz
,
T.
Strässle
,
C. G.
Salzmann
,
J.
Philippe
, and
S. F.
Parker
,
Europhys. Lett.
72
,
576
(
2005
).
83.
S.
Kawada
,
J. Phys. Soc. Jpn.
32
,
1442
(
1972
).
84.
C. G.
Salzmann
,
P. G.
Radaelli
,
B.
Slater
, and
J. L.
Finney
,
Phys. Chem. Chem. Phys.
13
,
18468
(
2011
).
85.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
,
Nature
299
,
810
(
1982
).
86.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
,
J. Phys. Chem. Solids
45
,
1135
(
1984
).
87.
T.
Matsuo
,
Y.
Tajima
, and
H.
Suga
,
J. Phys. Chem. Solids
47
,
165
(
1986
).
88.
O.
Haida
,
T.
Matsuo
,
H.
Suga
, and
S.
Seki
,
J. Chem. Thermodyn.
6
,
815
(
1974
).
89.
R. J.
Nelmes
,
J. S.
Loveday
,
W. G.
Marshall
,
G.
Hamel
,
J. M.
Besson
, and
S.
Klotz
,
Phys. Rev. Lett.
81
,
2719
(
1998
).
90.
C.
Bellin
,
B.
Barbiellini
,
S.
Klotz
,
T.
Buslaps
,
G.
Rousse
,
T.
Strässle
, and
A.
Shukla
,
Phys. Rev. B
83
,
094117
(
2011
).
91.
R. G.
Ross
,
P.
Andersson
, and
G.
Bäckström
,
J. Chem. Phys.
68
,
3967
(
1978
).
92.
G. A.
Slack
,
Phys. Rev. B
22
,
3065
(
1980
).

Supplementary Material

You do not currently have access to this content.