Steady-state and time-resolved fluorescence techniques were employed to study the excited-state proton transfer (ESPT) from a reversibly dissociating photoacid, 2-naphthol-6,8-disulfonate (2N68DS). The reaction was carried out in water and in acetonitrile–water solutions. We find by carefully analyzing the geminate recombination dynamics of the photobase–proton pair that follows the ESPT reaction that there are two targets for the proton back-recombination reaction: the original O dissociation site and the SO3 side group at the 8 position which is closest to the proton OH dissociation site. This observation is corroborated in acetonitrile-water mixtures of χwater < 0.14, where a slow intramolecular ESPT occurs on a time scale of about 1 ns between the OH group and the SO3 group via H-bonding water. The proton-transferred R*O fluorescence band in mixtures of χwater < 0.14 where only intramolecular ESPT occurs is red shifted by about 2000 cm−1 from the free R*O band in neat water. As the water content in the mixture increases above χwater = 0.14, the R*O fluorescence band shifts noticeably to the blue region. For χwater > 0.23 the band resembles the free anion band observed in pure water. Concomitantly, the ESPT rate increases when χwater increases because the intermolecular ESPT to the solvent (bulk water) gradually prevails over the much slower intramolecular via the water-bridges ESPT process.

1.
J. F.
Ireland
and
P. A. H.
Wyatt
,
Adv. Phys. Org. Chem.
12
,
131
(
1976
).
2.
L. M.
Tolbert
and
K. M.
Solntsev
,
Acc. Chem. Res.
35
,
19
(
2002
).
3.
E.
Pines
and
D.
Pines
, in
Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase
, edited by
T.
Elsaesser
, and
H. J.
Bakker
(
Springer Netherlands
,
Dordrecht
,
2002
), p.
155
.
4.
C.
Spies
 et al,
Phys. Chem. Chem. Phys.
16
,
9104
(
2014
).
5.
D.
Pines
and
E.
Pines
, in
Hydrogen-Transfer Reactions
, edited by
J. T.
Hynes
, et al
(
Wiley VCH
,
Weinheim
,
2007
), p.
377
.
6.
Y.
Martynov
 et al,
Russ. Chem. Rev.
46
,
1
(
1977
).
7.
L. G.
Arnaut
and
S. J.
Formosinho
,
J. Photochem. Photobiol., A
75
,
1
(
1993
).
8.
O. F.
Mohammed
 et al,
Science
310
,
83
(
2005
).
9.
K.
Adamczyk
 et al,
Science
326
,
1690
(
2009
).
10.
M.
Rini
 et al,
Science
301
,
349
(
2003
).
11.
O. F.
Mohammed
 et al,
Angew. Chem., Int. Ed.
46
,
1458
(
2007
).
12.
P.
Chou
and
K. M.
Solntsev
,
J. Phys. Chem. B
119
,
2089
(
2015
).
13.
E. T. J.
Nibbering
,
H.
Fidder
, and
E.
Pines
,
Annual Review of Physical Chemistry
(
Annual Reviews
,
Palo Alto
,
2005
), p.
337
.
14.
M.
Gutman
,
D.
Huppert
, and
E.
Pines
,
J. Am. Chem. Soc.
103
,
3709
(
1981
).
15.
H.
Yu
,
O.-H.
Kwon
, and
D.-J.
Jang
,
J. Phys. Chem. A
108
,
5932
(
2004
).
16.
J.
Ditkovich
 et al,
J. Phys. Chem. B
119
,
2690
(
2015
).
17.
J.
Ditkovich
,
D.
Pines
, and
E.
Pines
,
Phys. Chem. Chem. Phys.
18
,
16106
(
2016
).
18.
O.
Gajst
 et al,
J. Phys. Chem. A
122
,
4704
(
2018
).
19.
O.
Gajst
 et al,
J. Phys. Chem. A
122
,
6166
(
2018
).
20.
O.
Gajst
 et al,
J. Phys. Chem. A
123
,
48
(
2019
).
21.
M.
Ekimova
 et al,
J. Am. Chem. Soc.
141
,
14581
(
2019
).
22.
P.
Ädelroth
,
Biochim. Biophys. Acta, Bioenerg.
1757
,
867
(
2006
).
23.
C. A.
Wraight
,
Biochim. Biophys. Acta, Bioenerg.
1757
,
886
(
2006
).
24.
M.
Sigalov
, private communication (
2019
).
25.
D.
Huppert
,
E.
Pines
, and
N.
Agmon
,
J. Opt. Soc. Am. B
7
,
1545
(
1990
).
26.
R.
Simkovitch
 et al,
J. Phys. Chem. B
120
,
12615
(
2016
).
27.
D.
Pines
and
E.
Pines
,
J. Chem. Phys.
115
,
951
(
2001
).
28.
E.
Pines
,
D.
Huppert
, and
N.
Agmon
,
J. Chem. Phys.
88
,
5620
(
1988
).
29.
E. B.
Krissinel’
and
N.
Agmon
,
J. Comput. Chem.
17
,
1085
(
1996
).
30.
N.
Agmon
,
E.
Pines
, and
D.
Huppert
,
J. Chem. Phys.
88
,
5631
(
1988
).
31.
E.
Pines
 et al,
Ber. Bunsen-Ges. Phys. Chem. Chem. Phys.
102
,
511
(
1998
).
32.
S.
Park
and
N.
Agmon
,
J. Chem. Phys.
130
,
074507
(
2009
).
33.
P.
Ådelroth
 et al,
Biochim. Biophys. Acta, Bioenerg.
1459
,
533
(
2000
).
You do not currently have access to this content.