MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller–Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation. The package also offers a collection of multi-reference CC and CI approaches. Efficient implementations of density functional theory (DFT) and more advanced combined DFT-wave function approaches are also available. Its other special features, the highly competitive linear-scaling local correlation schemes, allow for MP2, RPA, ADC(2), CCSD(T), and higher-order CC calculations for extended systems. Local correlation calculations can be considerably accelerated by multi-level approximations and DFT-embedding techniques, and an interface to molecular dynamics software is provided for quantum mechanics/molecular mechanics calculations. All components of MRCC support shared-memory parallelism, and multi-node parallelization is also available for various methods. For academic purposes, the package is available free of charge.

1.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
2.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
,
J. Chem. Phys.
121
,
11599
(
2004
).
3.
A. D.
Boese
,
M.
Oren
,
O.
Atasoylu
,
J. M. L.
Martin
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
120
,
4129
(
2004
).
4.
A.
Karton
,
E.
Rabinovich
,
J. M. L.
Martin
, and
B.
Ruscic
,
J. Chem. Phys.
125
,
144108
(
2006
).
5.
D.
Feller
,
K. A.
Peterson
, and
D. A.
Dixon
,
J. Chem. Phys.
129
,
204105
(
2008
).
6.
D.
Bakowies
,
J. Chem. Phys.
130
(
14
),
144113
(
2009
).
7.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
8.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
129
,
144101
(
2008
).
9.
Y. J.
Bomble
,
J.
Vazquéz
,
M.
Kállay
,
C.
Michauk
,
P. G.
Szalay
,
A. G.
Császár
,
J.
Gauss
, and
J. F.
Stanton
,
J. Chem. Phys.
125
,
064108
(
2006
).
10.
A.
Karton
,
P. R.
Taylor
, and
J. M. L.
Martin
,
J. Chem. Phys.
127
,
064104
(
2007
).
11.
A.
Karton
,
I.
Kaminker
, and
J. M. L.
Martin
,
J. Phys. Chem. A
113
(
26
),
7610
(
2009
).
12.
A.
Karton
,
Chem. Phys. Lett.
737
,
136810
(
2019
).
13.
M. E.
Harding
,
J.
Vázquez
,
J.
Gauss
,
J. F.
Stanton
, and
M.
Kállay
,
J. Chem. Phys.
135
,
044513
(
2011
).
14.
H. S.
Nataraj
,
M.
Kállay
, and
L.
Visscher
,
J. Chem. Phys.
133
,
234109
(
2010
).
15.
M.
Kállay
,
P. G.
Szalay
, and
P. R.
Surján
,
J. Chem. Phys.
117
,
980
(
2002
).
16.
S.
Das
,
D.
Mukherjee
, and
M.
Kállay
,
J. Chem. Phys.
132
,
074103
(
2010
).
17.
S.
Das
,
M.
Kállay
, and
D.
Mukherjee
,
J. Chem. Phys.
133
,
234110
(
2010
).
18.
S.
Das
,
M.
Kállay
, and
D.
Mukherjee
,
Chem. Phys.
392
,
83
(
2012
).
19.
M.
Kállay
,
J.
Gauss
, and
P. G.
Szalay
,
J. Chem. Phys.
119
,
2991
(
2003
).
20.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
120
,
6841
(
2004
).
21.
D. P.
O’Neill
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
127
,
134109
(
2007
).
22.
J.
Gauss
,
K.
Ruud
, and
M.
Kállay
,
J. Chem. Phys.
127
,
074101
(
2007
).
23.
M.
Kállay
and
J.
Gauss
,
J. Mol. Struct.: THEOCHEM
768
,
71
(
2006
).
24.
J.
Gauss
,
M.
Kállay
, and
F.
Neese
,
J. Phys. Chem. A
113
,
11541
(
2009
).
25.
J.
Gauss
,
A.
Tajti
,
M.
Kállay
,
J. F.
Stanton
, and
P. G.
Szalay
,
J. Chem. Phys.
125
,
144111
(
2006
).
26.
D. P.
O’Neill
,
M.
Kállay
, and
J.
Gauss
,
Mol. Phys.
105
,
2447
(
2007
).
27.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
121
,
9257
(
2004
).
28.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjánszki
,
B.
Ladóczki
, and
M.
Kállay
,
J. Chem. Phys.
139
,
094105
(
2013
).
29.
G.
Samu
and
M.
Kállay
,
J. Chem. Phys.
146
,
204101
(
2017
).
30.
G.
Samu
and
M.
Kállay
,
J. Chem. Phys.
149
,
124101
(
2018
).
31.
M.
Kállay
,
J. Chem. Phys.
142
,
204105
(
2015
).
32.
P. D.
Mezei
,
G. I.
Csonka
, and
M.
Kállay
,
J. Chem. Theory Comput.
14
,
2469
(
2018
).
33.
M.
Kállay
,
J. Chem. Phys.
141
,
244113
(
2014
).
34.
D.
Mester
and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
1690
(
2019
).
35.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
,
J. Chem. Phys.
148
,
094111
(
2018
).
36.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
,
J. Chem. Phys.
146
,
194102
(
2017
).
37.
P. R.
Nagy
and
M.
Kállay
,
J. Chem. Phys.
146
,
214106
(
2017
).
38.
L.
Gyevi-Nagy
,
M.
Kállay
, and
P. R.
Nagy
,
J. Chem. Theory Comput.
16
,
366
(
2020
).
39.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
134
,
124111
(
2011
).
40.
P. R.
Nagy
,
G.
Samu
, and
M.
Kállay
,
J. Chem. Theory Comput.
12
,
4897
(
2016
).
41.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
42.
P. R.
Nagy
,
G.
Samu
, and
M.
Kállay
,
J. Chem. Theory Comput.
14
,
4193
(
2018
).
43.
P. R.
Nagy
and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
5275
(
2019
).
44.
E.
Paulechka
and
A.
Kazakov
,
J. Chem. Theory Comput.
14
,
5920
(
2018
).
45.
D.
Mester
,
P.
Nagy
, and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
6111
(
2019
).
46.
P. D.
Mezei
,
G. I.
Csonka
,
A.
Ruzsinszky
, and
M.
Kállay
,
J. Chem. Theory Comput.
11
,
4615
(
2015
).
47.
P. D.
Mezei
,
G. I.
Csonka
,
A.
Ruzsinszky
, and
M.
Kállay
,
J. Chem. Theory Comput.
13
,
796
(
2017
).
48.
D.
Mester
and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
4440
(
2019
).
49.
P. D.
Mezei
,
A.
Ruzsinszky
, and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
6607
(
2019
).
50.
P. D.
Mezei
and
M.
Kállay
,
J. Chem. Theory Comput.
15
,
6678
(
2019
).
51.
B.
Hégely
,
P. R.
Nagy
,
G. G.
Ferenczy
, and
M.
Kállay
,
J. Chem. Phys.
145
,
064107
(
2016
).
52.
B.
Hégely
,
P. R.
Nagy
, and
M.
Kállay
,
J. Chem. Theory Comput.
14
,
4600
(
2018
).
53.
B.
Hégely
,
F.
Bogár
,
G. G.
Ferenczy
, and
M.
Kállay
,
Theor. Chem. Acc.
134
,
132
(
2015
).
54.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
(
Wiley
,
Chichester
,
2000
).
55.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
McGraw-Hill
,
New York
,
1989
).
56.
C. C. J.
Roothan
,
Rev. Mod. Phys.
32
,
179
(
1960
).
57.
J.
Csóka
and
M.
Kállay
, “
Reduced-scaling Hartree-Fock and multiconfigurational self-consistent field methods
” (to be published) (
2020
).
58.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
59.
M.
Filatov
and
S.
Shaik
,
Chem. Phys. Lett.
288
,
689
(
1998
).
60.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
61.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
62.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
63.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
64.
F.
Furche
,
Phys. Rev. B
64
,
195120
(
2001
).
65.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
66.
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
, and
M.
Scheffler
,
Phys. Rev. B
88
,
035120
(
2013
).
67.
A.
Szabo
and
N. S.
Ostlund
,
J. Chem. Phys.
67
,
4351
(
1977
).
68.
A.
Heßelmann
,
Phys. Rev. A
85
,
012517
(
2012
).
69.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
70.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
10
,
4119
(
2008
).
71.
N. O. C.
Winter
and
C.
Hättig
,
J. Chem. Phys.
134
,
184101
(
2011
).
72.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
73.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
74.
P.
Piecuch
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
6103
(
1999
).
75.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
4282
(
1992
).
76.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
77.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
78.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
4041
(
1985
).
79.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
9221
(
1998
).
80.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
5243
(
1998
).
81.
T. D.
Crawford
and
J. F.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
82.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
81
,
5906
(
1984
).
83.
H.
Koch
,
O.
Christiansen
,
P.
Jørgensen
,
A. M.
Sánchez de Merás
, and
T.
Helgaker
,
J. Chem. Phys.
106
,
1808
(
1997
).
84.
N.
Oliphant
and
L.
Adamowicz
,
J. Chem. Phys.
94
,
1229
(
1991
).
85.
P.
Piecuch
,
N.
Oliphant
, and
L.
Adamowicz
,
J. Chem. Phys.
99
,
1875
(
1993
).
86.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chem. Acc.
35
,
33
(
1974
).
87.

Functionals were obtained from the Density Functional Repository as developed and distributed by the Quantum Chemistry Group, CCLRC Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD, United Kingdom. Contact Huub van Dam (h.j.j.vandam@dl.ac.uk) or Paul Sherwood for further information.

88.
R.
Strange
,
F. R.
Manby
, and
P. J.
Knowles
,
Comput. Phys. Commun.
136
,
310
(
2001
).
89.
M. A. L.
Marques
,
M. J. T.
Oliveira
, and
T.
Burnus
,
Comput. Phys. Commun.
183
,
2272
(
2012
).
90.
See https://www.tddft.org/programs/libxc/ for the LIBXC library of density functionals.
91.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
92.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
93.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
18
,
20905
(
2016
).
94.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
95.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
96.
A.
Ganyecz
,
M.
Kállay
, and
J.
Csontos
,
J. Chem. Theory Comput.
13
,
4193
(
2017
).
97.
M. E.
Casida
, “
Recent advances in density functional methods
,” in
Computational Chemistry: Reviews of Current Trends
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1999
), Vol. 1.
98.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
99.
S.
Grimme
and
F.
Neese
,
J. Chem. Phys.
127
,
154116
(
2007
).
100.
J. B.
Foresman
,
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
J. Phys. Chem.
96
,
135
(
1992
).
101.
A. D.
McLachlan
and
A. M.
Ball
,
Rev. Mod. Phys.
36
,
844
(
1964
).
102.
M.
Head-Gordon
,
R. J.
Rico
,
M.
Oumi
, and
T. J.
Lee
,
Chem. Phys. Lett.
219
,
21
(
1994
).
103.
S.
Grimme
and
E. I.
Izgorodina
,
Chem. Phys.
305
,
223
(
2004
).
104.
Y. M.
Rhee
and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
5314
(
2007
).
105.
M.
Head-Gordon
,
M.
Oumi
, and
D.
Maurice
,
Mol. Phys.
96
,
593
(
1999
).
106.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
107.
D.
Kánnár
,
A.
Tajti
, and
P. G.
Szalay
,
J. Chem. Theory Comput.
13
,
202
(
2017
).
108.
D.
Kánnár
and
P. G.
Szalay
,
J. Chem. Theory Comput.
10
,
3757
(
2014
).
109.
A.
Tajti
and
P. G.
Szalay
,
J. Chem. Theory Comput.
15
,
5523
(
2019
).
110.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
111.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
112.
W.
Liang
and
M.
Head-Gordon
,
J. Phys. Chem. A
108
,
3206
(
2004
).
113.
R. P.
Steele
,
R. A.
DiStasio
, Jr.
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
5
,
1560
(
2009
).
114.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
115.
C.
Köppl
and
H.-J.
Werner
,
J. Chem. Theory Comput.
12
,
3122
(
2016
).
116.
D.
Mejía-Rodríguez
and
A. M.
Köster
,
J. Chem. Phys.
141
,
124114
(
2014
).
117.
T. R.
Barr
and
E. R.
Davidson
,
Phys. Rev. A
1
,
644
(
1970
).
118.
L.
Adamowicz
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
6314
(
1987
).
119.
P.
Neogrády
,
M.
Pitoňák
, and
M.
Urban
,
Mol. Phys.
103
,
2141
(
2005
).
120.
W.
Li
,
Z.
Ni
, and
S.
Li
,
Mol. Phys.
114
,
1447
(
2016
).
121.
M.
Schwilk
,
D.
Usvyat
, and
H.-J.
Werner
,
J. Chem. Phys.
142
,
121102
(
2015
).
122.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
123.
P. R.
Nagy
and
M.
Kállay
, “
Reduced-cost schemes to approach the basis set limit of CCSD(T) energies for large molecules relying on local natural orbital methods
,”
J. Chem. Theory Comput.
(unpublished) (
2019
).
124.
M.
Bojtár
,
P. Z.
Janzsó-Berend
,
D.
Mester
,
D.
Hessz
,
M.
Kállay
,
M.
Kubinyi
, and
I.
Bitter
,
Beilstein J. Org. Chem.
14
,
747
(
2018
).
125.
I.
Bakó
,
I.
Mayer
,
A.
Hamza
, and
L.
Pusztai
,
J. Mol. Liq.
285
,
171
(
2019
).
126.
V.
Štejfa
,
A.
Bazyleva
,
M.
Fulem
,
J.
Rohlíček
,
E.
Skořepová
,
K.
Růžička
, and
A. V.
Blokhin
,
J. Chem. Thermodyn.
131
,
524
(
2019
).
127.
T.
Földes
,
Á.
Madarász
,
Á.
Révész
,
Z.
Dobi
,
S.
Varga
,
A.
Hamza
,
P. R.
Nagy
,
P. M.
Pihko
, and
I.
Pápai
,
J. Am. Chem. Soc.
139
,
17052
(
2017
).
128.
L.
Kárpáti
,
Á.
Ganyecz
,
T.
Nagy
,
G.
Hamar
,
E.
Banka
,
M.
Kállay
, and
V.
Vargha
, “
Synthesis and characterization of isophorondiamine-based oligoamides: catalytic effect of amides during the curing of epoxy resins
,”
Polym. Bull.
(published online,
2019
).
129.
E.
Paulechka
and
A.
Kazakov
,
J. Chem. Eng. Data
64
,
4863
(
2019
).
130.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
3364
(
2013
).
131.
J.-L.
Pons
,
F.
de Lamotte
,
M.-F.
Gautier
, and
M.-A.
Delsuc
,
J. Biol. Chem.
278
,
14249
(
2003
).
132.
F.
Maseras
and
K.
Morokuma
,
J. Comput. Chem.
16
,
1170
(
1995
).
133.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).
134.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
135.
G.
Knizia
,
J. Chem. Theory Comput.
9
,
4834
(
2013
).
136.
I.
Mayer
,
Chem. Phys. Lett.
97
,
270
(
1983
).
137.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
138.
J.
Pipek
and
P.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
139.
F.
Aquilante
,
T. B.
Pedersen
,
A. M.
Sánchez de Merás
, and
H.
Koch
,
J. Chem. Phys.
125
,
174101
(
2006
).
140.
M.
Kállay
,
H. S.
Nataraj
,
B. K.
Sahoo
,
B. P.
Das
, and
L.
Visscher
,
Phys. Rev. A
83
,
030503(R)
(
2011
).
141.
D.
Mester
,
J.
Csontos
, and
M.
Kállay
,
Theor. Chem. Acc.
134
,
74
(
2015
).
142.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
143.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
144.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chem. Acc.
28
,
213
(
1973
).
145.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
146.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
147.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
128
,
084102
(
2008
).
148.
K. A.
Peterson
,
J. Chem. Phys.
119
,
11099
(
2003
).
149.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
150.
F.
Weigend
,
J. Comput. Chem.
29
,
167
(
2008
).
151.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
152.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
153.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
154.
D.
Andrae
,
U.
Häußermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuß
,
Theor. Chem. Acc.
77
,
123
(
1990
).
155.
B.
Metz
,
M.
Schweizer
,
H.
Stoll
,
M.
Dolg
, and
W.
Liu
,
Theor. Chem. Acc.
104
,
22
(
2000
).
156.
See https://www.basissetexchange.org/ for Basis Set Exchange.
158.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
,
J. Chem. Inf. Modell.
59
,
4814
(
2019
).
159.
D. A.
Case
,
D. S.
Cerutti
,
T. E.
Cheatham
 III
,
T. A.
Darden
,
R. E.
Duke
,
T. J.
Giese
,
H.
Gohlke
,
A. W.
Götz
,
D.
Greene
,
N.
Homeyer
,
S.
Izadi
,
A.
Kovalenko
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
D.
Mermelstein
,
K. M.
Merz
,
G.
Monard
,
H.
Nguyen
,
I.
Omelyan
,
A.
Onufriev
,
F.
Pan
,
R.
Qi
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
C. L.
Simmerling
,
W. M.
Botello-Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wolf
,
X.
Wu
,
L.
Xiao
,
D. M.
York
, and
P. A.
Kollman
, Amber 2017, University of California, San Francisco, 2017.
160.
R.
Salomon-Ferrer
,
D. A.
Case
, and
R. C.
Walker
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
198
(
2013
).
161.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
162.
R.
Di Remigio
,
K.
Mozgawa
,
H.
Cao
,
V.
Weijo
, and
L.
Frediani
,
J. Chem. Phys.
144
,
124103
(
2016
).
163.
R.
Di Remigio
,
A. H.
Steindal
,
K.
Mozgawa
,
V.
Weijo
,
H.
Cao
, and
L.
Frediani
,
Int. J. Quantum Chem.
119
,
e25685
(
2019
).
164.

PCMSolver, an open-source library for the polarizable continuum model electrostatic problem, written by R. Di Remigio, L. Frediani, and contributors (see http://pcmsolver.readthedocs.io/).

165.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
S.
Stopkowicz
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages molecule (
J.
Almlöf
and
P. R.
Taylor
), props (
P. R.
Taylor
), abacus (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, for the current version, see http://www.cfour.de165; see also
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled Cluster Techniques for Computational Chemistry: the CFOUR Program Package
” (to be published).
166.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
F. B.
Brown
,
R. M.
Pitzer
,
R.
Ahlrichs
,
H.-J.
Böhm
,
A. H. H.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
M.
Dallos
,
C.
Erhard
,
M.
Ernzerhof
,
G.
Gawboy
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
T.
Müller
,
V.
Parasuk
,
M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
,
E.
Stahlberg
,
P. G.
Szalay
, and
J.-G.
Zhao
, Columbus, an ab initio electronic structure program, release 5.9,
2001
.
167.
Dirac08, a relativistic ab initio electronic structure program, development version,
2010
, written by
L.
Visscher
,
H. J. Aa.
Jensen
, and
T.
Saue
, with new contributions from
R.
Bast
,
S.
Dubillard
,
K. G.
Dyall
,
U.
Ekström
,
E.
Eliav
,
T.
Fleig
,
A. S. P.
Gomes
,
T. U.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
P.
Norman
,
J.
Olsen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
, and
J.
Sikkema
(see http://dirac.chem.sdu.dk).
168.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
169.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
170.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
 III
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
 III
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
13
,
3185
(
2017
).
171.
G.
Schaftenaar
and
J. H.
Noordik
,
J. Comput.-Aided Mol. Des.
14
,
123
(
2000
).
You do not currently have access to this content.