An efficient representation of molecular correlated wave functions is proposed, which features regularization of the Coulomb electron–electron singularities via the F12-style explicit correlation and a pair-natural orbital factorization of the correlation components of the wave function expressed in the real space. The pair-natural orbitals are expressed in an adaptive multiresolution basis and computed directly by iterative variational optimization. The approach is demonstrated by computing the second-order Moller–Plesset energies of small- and medium-sized molecules. The resulting MRA-PNO-MP2-F12 method allows for the first time to compute correlated wave functions in a real-space representation for systems with dozens of atoms (as demonstrated here by computations on alkanes as large as C10H22), with precision exceeding what is achievable with the conventional explicitly correlated MP2 approaches based on the atomic orbital representations.

1.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
2.
T.
Schäfer
,
B.
Ramberger
, and
G.
Kresse
, “
Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis
,”
J. Chem. Phys.
146
,
104101
(
2017
).
3.
T.
Helgaker
,
W.
Klopper
, and
H.
Koch
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
9646
(
1997
).
4.
J. J.
Shepherd
,
A.
Grüneis
,
G. H.
Booth
,
G.
Kresse
, and
A.
Alavi
, “
Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems
,”
Phys. Rev. B
86
,
035111
(
2012
).
5.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
, “
Explicitly correlated R12/F12 methods for electronic structure
,”
Chem. Rev.
112
,
75
107
(
2012
).
6.
A.
Grüneis
,
J. J.
Shepherd
,
A.
Alavi
,
D. P.
Tew
, and
G. H.
Booth
, “
Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions
,”
J. Chem. Phys.
139
,
084112
(
2013
).
7.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
, “
HEAT: High accuracy extrapolated ab initio thermochemistry
,”
J. Chem. Phys.
121
,
11599
11613
(
2004
).
8.
J. R.
Flores
, “
High-precision atomic computations from finite-element techniques: Second-order correlation energies of rare-gas atoms
,”
J. Chem. Phys.
98
,
5642
5647
(
1993
).
9.
H. M.
Schmidt
and
J.
Linderberg
, “
Finite-element computation of perturbation energies for the two-electron atom
,”
Phys. Rev. A
49
,
4406
4410
(
1994
).
10.
J.
Ackermann
, “
Finite-element-method expectation values for correlated two-electron wave functions
,”
Phys. Rev. A
52
,
1968
1975
(
1995
).
11.
J. R.
Flores
and
D.
Kolb
, “
Atomic MP2 correlation energies fast and accurately calculated by FEM extrapolations
,”
J. Phys. B: At., Mol. Opt. Phys.
32
,
779
790
(
1999
).
12.
J. R.
Flores
, “
New benchmarks for the second-order correlation energies of Ne and Ar through the finite element MP2 method
,”
Int. J. Quantum Chem.
108
,
2172
2177
(
2008
).
13.
F. A.
Bischoff
,
R. J.
Harrison
, and
E. F.
Valeev
, “
Computing many-body wave functions with guaranteed precision: The first-order Møller-Plesset wave function for the ground state of helium atom
,”
J. Chem. Phys.
137
,
104103
(
2012
).
14.
F. A.
Bischoff
and
E. F.
Valeev
, “
Computing molecular correlation energies with guaranteed precision
,”
J. Chem. Phys.
139
,
114106
(
2013
).
15.
F. A.
Bischoff
, “
Regularizing the molecular potential in electronic structure calculations. I. SCF methods
,”
J. Chem. Phys.
141
,
184105
(
2014
).
16.
F. A.
Bischoff
, “
Regularizing the molecular potential in electronic structure calculations. II. Many-body methods
,”
J. Chem. Phys.
141
,
184106
(
2014
).
17.
J. S.
Kottmann
and
F. A.
Bischoff
, “
Coupled-cluster in real space. 2. cc2 excited states using multiresolution analysis
,”
J. Chem. Theor. Comput.
13
,
5956
5965
(
2017
).
18.
J. S.
Kottmann
and
F. A.
Bischoff
, “
Coupled-cluster in real space. 1. CC2 ground state energies using multiresolution analysis
,”
J. Chem. Theor. Comput.
13
,
5945
5955
(
2017
).
19.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
, and
T. J.
Martínez
, “
Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions
,”
J. Chem. Phys.
137
,
221101
(
2012
).
20.
N.
Mardirossian
,
J. D.
McClain
, and
G. K.-L.
Chan
, “
Lowering of the complexity of quantum chemistry methods by choice of representation
,”
J. Chem. Phys.
148
,
044106
(
2018
).
21.
C.
Edmiston
and
M.
Krauss
, “
Configuration-interaction calculation of H3 and H2
,”
J. Chem. Phys.
42
,
1119
1120
(
1965
).
22.
C.
Edmiston
and
M.
Krauss
, “
Pseudonatural orbitals as a basis for the superposition of configurations. II. Energy surface for linear H3
,”
J. Comput. Phys.
49
,
192
205
(
1968
).
23.
W.
Meyer
, “
Ionization energies of water from PNO-CI calculations
,”
Int. J. Quantum Chem.
5
,
341
348
(
1971
).
24.
W.
Meyer
, “
PNO-CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane
,”
J. Chem. Phys.
58
,
1017
1035
(
1973
).
25.
R.
Ahlrichs
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
, “
PNO–CI (pair natural orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. I. Outline of the method for closed-shell states
,”
J. Chem. Phys.
62
,
1225
1234
(
1975
).
26.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
, “
Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method
,”
J. Chem. Phys.
130
,
114108
(
2009
).
27.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
, “
Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
,”
J. Chem. Phys.
131
,
064103
(
2009
).
28.
P.
Pinski
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals
,”
J. Chem. Phys.
143
,
034108
(
2015
).
29.
H.-J.
Werner
,
G.
Knizia
,
C.
Krause
,
M.
Schwilk
, and
M.
Dornbach
, “
Scalable electron correlation Methods I: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors
,”
J. Chem. Theory Comput.
11
,
484
507
(
2015
).
30.
D. P.
Tew
and
C.
Hättig
, “
Pair natural orbitals in explicitly correlated second-order Møller-Plesset theory
,”
Int. J. Quantum Chem.
113
,
224
229
(
2012
).
31.
B. K.
Alpert
, “
Sparse representation of smooth linear operators
,” Ph.D. thesis,
Yale University
,
1990
.
32.
G.
Beylkin
,
R.
Coifman
, and
V.
Rokhlin
, “
Fast wavelet transforms and numerical algorithms I
,”
Commun. Pure Appl. Math.
44
,
141
183
(
1991
).
33.
B. K.
Alpert
, “
A class of bases in L2 for the sparse representation of integral operators
,”
SIAM J. Math. Anal.
24
,
246
262
(
1993
).
34.
B. K.
Alpert
,
G.
Beylkin
,
D.
Gines
, and
L.
Vozovoi
, “
Adaptive solution of partial differential equations in multiwavelet bases
,”
J. Comput. Phys.
182
,
149
190
(
2002
).
35.
G.
Beylkin
,
V.
Cheruvu
, and
F.
Perez
, “
Fast adaptive algorithms in the non-standard form for multidimensional problems
,”
Appl. Comput Harmonic Anal.
24
,
354
377
(
2008
).
36.
R. J.
Harrison
,
G. I.
Fann
,
T.
Yanai
,
Z.
Gan
, and
G.
Beylkin
, “
Multiresolution quantum chemistry: Basic theory and initial applications
,”
J. Chem. Phys.
121
,
11587
11598
(
2004
).
37.

We follow the notation used in previous works denoting the particles onto which an operator acts as subscripts, i.e., O^12O^1,2. For one-particle equations, the subscripts are dropped for brevity.

38.
T.
Yanai
,
G. I.
Fann
,
Z.
Gan
,
R. J.
Harrison
, and
G.
Beylkin
, “
Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree–Fock and density functional theory
,”
J. Chem. Phys.
121
,
2866
2876
(
2004
).
39.
F. A.
Bischoff
, “
Analytic second nuclear derivatives of Hartree-Fock and DFT using multi-resolution analysis
,”
J. Chem. Phys.
146
,
124126
(
2017
).
40.
R. J.
Harrison
,
G.
Beylkin
,
F. A.
Bischoff
,
J. A.
Calvin
,
G. I.
Fann
,
J.
Fosso-Tande
,
D.
Galindo
,
J. R.
Hammond
,
R.
Hartman-Baker
,
J. C.
Hill
,
J.
Jia
,
J. S.
Kottmann
,
M.-J.
Yvonne Ou
,
J.
Pei
,
L. E.
Ratcliff
,
M. G.
Reuter
,
A. C.
Richie-Halford
,
N. A.
Romero
,
H.
Sekino
,
W. A.
Shelton
,
B. E.
Sundahl
,
W. S.
Thornton
,
E. F.
Valeev
,
A.
Vázquez-Mayagoitia
,
N.
Vence
,
T.
Yanai
, and
Y.
Yokoi
, “
Madness: A multiresolution, adaptive numerical environment for scientific simulation
,”
SIAM J. Sci. Comput.
38
,
S123
S142
(
2016
).
41.
F. A.
Bischoff
, “
Computing accurate molecular properties in real space using multiresolution analysis
,” in
Advances in Quantum Chemistry
(
Elsevier
,
2019
).
42.
E. A.
Hylleraas
, “
Über den grundterm der zweielektronenprobleme von H, He, Li+, Be++ usw
,”
Z. Phys.
65
,
209
225
(
1930
).
43.

In this work, we only focus on the electron–electron cusp. The electron–nuclear cusp also plays a role in the real-space many-body methods since its seam has the same dimension as that of the electron–electron cusp. Although it is possible to regularize the electron–nuclei cusps via the NEMO approach described in Refs. 15 and 16, this is less crucial for the PNO-based approach we pursue here. It is because the cusps in PNOs are pointwise, and just like the cusps in the Hartree–Fock orbitals, these can be effectively described by the adaptive multiresolution refinement of the basis.

44.
M.
Kalos
, “
Monte Carlo calculations of the ground state of three- and four-body nuclei
,”
Phys. Rev.
128
,
1791
1795
(
1962
).
45.
M. C.
Clement
,
J.
Zhang
,
C. A.
Lewis
,
C.
Yang
, and
E. F.
Valeev
, “
Optimized pair natural orbitals for the coupled cluster methods
,”
J. Chem. Theory Comput.
14
,
4581
4589
(
2018
).
46.
W.
Kutzelnigg
and
J. D.
Morgan
, “
Rates of convergence of the partial-wave expansions of atomic correlation energies
,”
J. Chem. Phys.
96
,
4484
(
1992
).
47.
W.
Kutzelnigg
, “
r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l
,”
Theor. Chim. Acta
68
,
445
469
(
1985
).
48.
R. J.
Harrison
, “
Krylov subspace accelerated inexact Newton method for linear and nonlinear equations
,”
J. Comput. Chem.
25
,
328
334
(
2004
).
49.
J. S.
Kottmann
,
S.
Höfener
, and
F. A.
Bischoff
, “
Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation
,”
Phys. Chem. Chem. Phys.
17
,
31453
31462
(
2015
).
50.
T. E.
Baker
,
K.
Burke
, and
S. R.
White
, “
Accurate correlation energies in one-dimensional systems from small system-adapted basis functions
,”
Phys. Rev. B
97
,
085139
(
2018
).
51.
J. S.
Kottmann
, “
Coupled-cluster in real space
,” Ph.D. thesis,
Humboldt-Universität zu Berlin; Mathematisch-Naturwissenschaftliche Fakultät
,
2018
.
52.
S. R.
Jensen
, “
Real-space all-electron density functional theory with multiwavelets
,” Ph.D. thesis,
UiT The Arctic University of Norway
,
2014
.
53.
J.
Foster
and
S.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
(
1960
).
54.
R. A.
Bachorz
,
F. A.
Bischoff
,
A.
Glöß
,
C.
Hättig
,
S.
Höfener
,
W.
Klopper
, and
D. P.
Tew
, “
The MP2-F12 method in the TURBOMOLE program package
,”
J. Comput. Chem.
32
,
2492
2513
(
2011
).
55.
O.
Christiansen
,
H.
Koch
,
P.
Jørgensen
, and
J.
Olsen
, “
Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory
,”
Chem. Phys. Lett.
256
,
185
194
(
1996
).
56.
TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
57.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
58.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon
,”
J. Mol. Struct.: THEOCHEM
388
,
339
349
(
1996
).
59.
P. J.
Knowles
and
H.-J.
Werner
, “
An efficient method for the evaluation of coupling coefficients in configuration interaction calculations
,”
Chem. Phys. Lett.
145
,
514
522
(
1988
).
60.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
61.
A.
Halkier
,
W.
Klopper
,
T.
Helgaker
, and
P.
Jørgensen
, “
Basis-set convergence of the molecular electric dipole moment
,”
J. Chem. Phys.
111
,
4424
4430
(
1999
).
62.
C.
Hättig
, “
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr
,”
Phys. Chem. Chem. Phys.
7
,
59
66
(
2005
).
63.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
,”
J. Chem. Phys.
114
,
9244
9253
(
2001
).
64.
K. E.
Yousaf
and
K. A.
Peterson
, “
Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pvnz orbital basis sets
,”
Chem. Phys. Lett.
476
,
303
307
(
2009
).
65.

The number of iterations in the Hartree–Fock calculation did not change significantly.

66.
F.
Pavošević
,
F.
Neese
, and
E. F.
Valeev
, “
Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple
,”
J. Chem. Phys.
141
,
054106
(
2014
).
You do not currently have access to this content.