Accurate prediction of intermolecular interaction energies is a fundamental challenge in electronic structure theory due to their subtle character and small magnitudes relative to total molecular energies. Symmetry adapted perturbation theory (SAPT) provides rigorous quantum mechanical means for computing such quantities directly and accurately, but for a computational cost of at least O(N5), where N is the number of atoms. Here, we report machine learned models of SAPT components with a computational cost that scales asymptotically linearly, O(N). We use modified multi-target Behler–Parrinello neural networks and specialized intermolecular symmetry functions to address the idiosyncrasies of the intermolecular problem, achieving 1.2 kcal mol−1 mean absolute errors on a test set of hydrogen bound complexes including structural data extracted from the Cambridge Structural Database and Protein Data Bank, spanning an interaction energy range of 20 kcal mol−1. Additionally, we recover accurate predictions of the physically meaningful SAPT component energies, of which dispersion and induction/polarization were the easiest to predict and electrostatics and exchange–repulsion are the most difficult.

1.
M. M.
Gromiha
,
K.
Saraboji
,
S.
Ahmad
,
M.
Ponnuswamy
, and
M. N.
Suwa
,
Biophys. Chem.
107
,
263
(
2004
).
2.
E. S.
Lowe
and
J. J.
Lertora
, in
Principles of Clinical Pharmacology
, 3rd ed., edited by
A. J.
Atkinson
,
S.-M.
Huang
,
J. J.
Lertora
, and
S. P.
Markey
(
Academic Press
,
2012
), pp.
343
356
.
3.
C.
Sutton
,
C.
Risko
, and
J.-L.
Brédas
,
Chem. Mater.
28
,
3
(
2016
).
4.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
6.
E. G.
Hohenstein
and
C. D.
Sherrill
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
304
(
2012
).
7.
K.
Szalewicz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
254
(
2012
).
8.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
).
9.
C. D.
Sherrill
,
Acc. Chem. Res.
46
,
1020
(
2013
).
10.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
,
J. Chem. Phys.
140
,
094106
(
2014
).
11.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
12.
J.
Behler
,
J.Chem. Phys.
134
,
074106
(
2011
).
13.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
,
3192
(
2017
).
14.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, arXiv abs/1704.01212 (
2017
).
15.
16.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
,
Nature
521
,
436
(
2015
).
17.
K.
Yao
,
J. E.
Herr
,
D.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
,
Chem. Sci.
9
,
2261
(
2018
).
18.
M.
Gastegger
,
L.
Schwiedrzik
,
M.
Bittermann
,
F.
Berzsenyi
, and
P.
Marquetand
,
J. Chem. Phys.
148
,
241709
(
2018
).
19.
R.
Zubatyuk
,
J. S.
Smith
,
J.
Leszczynski
, and
O.
Isayev
,
Sci. Adv.
5
,
eaav6490
(
2019
).
20.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
,
J. Chem. Phys.
148
,
241715
(
2018
).
21.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
22.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
,
Phys. Chem. Chem. Phys.
18
(
31
),
20905
(
2016
).
23.
A.
Fabrizio
,
A.
Grisafi
,
B.
Meyer
,
M.
Ceriotti
, and
C.
Corminboeuf
,
Chem. Sci.
10
,
9424
(
2019
).
24.
T.
Gao
,
H.-Z.
Li
,
W.
Li
,
L.
Li
,
C.
Fang
,
H.
Li
,
L. H.
Hu
,
Y.
Lu
, and
Z.
Su
,
J. Cheminf.
8
,
24
(
2016
).
25.
P. D.
Mezei
and
O. A.
von Lilienfeld
, arXiv:1903.09010 (
2019
).
26.
T.
Bereau
,
R. A.
DiStasio
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241706
(
2018
).
27.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G. A.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
K. M.
Merz
, and
C. D.
Sherrill
,
J. Chem. Phys.
147
,
161727
(
2017
).
28.
C. A.
Bauer
,
G.
Schneider
, and
A. H.
Göller
,
J. Cheminf.
11
,
59
(
2019
).
29.
R. T.
McGibbon
,
A. G.
Taube
,
A. G.
Donchev
,
K.
Siva
,
F.
Hernández
,
C.
Hargus
,
K.-H.
Law
,
J. L.
Klepeis
, and
D. E.
Shaw
,
J. Chem. Phys.
147
,
161725
(
2017
).
30.
J.
Lim
,
S.
Ryu
,
K.
Park
,
Y. J.
Choe
,
J.
Ham
, and
W. Y.
Kim
,
J. Chem. Inf. Mod.
59
,
3981
(
2019
).
31.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
3027
(
2011
).
32.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
33.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
,
Sci. Data
1
,
140022
(
2014
).
34.
L.
Ruddigkeit
,
R.
van Deursen
,
L. C.
Blum
, and
J.-L.
Reymond
,
J. Chem. Inf. Modell.
52
,
2864
(
2012
).
35.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
36.
L. C.
Blum
and
J.-L.
Reymond
,
J. Am. Chem. Soc.
131
,
8732
(
2009
).
37.
Schrödinger Release 2018-4, Protein-Ligand Database (PLDB), Schrödinger, LLC, New York, NY, 2019.
38.
M. P. L. C. R.
Groom
,
I. J.
Bruno
, and
S. C.
Ward
,
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
72
,
171
(
2016
).
39.
The Cambridge Crystallographic Data Centre, 12 Union Road
(
Cambridge, CB2 1EZ, United Kingdom
).
40.
The Protein Data Bank
H. M.
Berman
,
J.
Westbrook
,
Z.
Feng
,
G.
Gilliland
,
T. N.
Bhat
,
H.
Weissig
,
I. N.
Shindyalov
,
P. E.
Bourne
,
Nucleic Acids Res.
28
,
235
242
(
2000
).
41.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
” (
2015
), software available from https://www.tensorflow.org.
42.
F.
Chollet
, Keras, https://github.com/keras-team/keras,
2019
.
43.
D.
Kingma
and
J.
Ba
, in
International Conference on Learning Representations
(
2014
).
44.
A. Y.
Ng
, in
ICML ’04: Proceedings of the Twenty-first International Conference on Machine Learning
(
ACM
,
New York, NY, USA
,
2004
), p.
78
.
45.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
,
J. Mach. Learn. Res.
15
,
1929
(
2014
).
46.
A. F.
Agarap
, arXiv:1803.08375 (
2018
).
47.
W.
Waegeman
,
K.
Dembczyński
, and
E.
Hüllermeier
,
Data Min. Knowl. Discovery
33
,
293
(
2019
).
48.

Supplementary Material

You do not currently have access to this content.