A new orbital optimization for the multiconfiguration self-consistent field method is presented. This method combines a second-order (SO) algorithm for the optimization of the active orbitals with the first-order super configuration interaction (SCI) optimization of the remaining closed-virtual rotations and is denoted as the SO–SCI method. The SO–SCI method significantly improves the convergence as compared to the conventional SCI method. In combination with density fitting, the intermediates from the gradient calculation can be reused to evaluate the two-electron integrals required for the active Hessian without introducing a large computational overhead. The orbitals and CI coefficients are optimized alternately, but the CI-orbital coupling is accounted for by the limited memory Broyden–Fletcher–Goldfarb–Shanno quasi-Newton method. This further improves the speed of convergence. The method is applicable to large molecules. The efficiency and robustness of the presented method is demonstrated in benchmark calculations for 21 aromatic molecules as well as for various transition metal complexes with up to 826 electrons and 5154 basis functions.

1.
F.
Grein
and
T. C.
Chang
,
Chem. Phys. Lett.
12
,
44
(
1971
).
2.
F.
Grein
and
A.
Banerjee
,
Chem. Phys. Lett.
31
,
281
(
1975
).
3.
F.
Grein
and
A.
Banerjee
,
Int. J. Quantum Chem.
9
,
147
(
1975
).
4.
A.
Banerjee
and
F.
Grein
,
Int. J. Quantum Chem.
10
,
123
(
1976
).
5.
K.
Ruedenberg
,
L. M.
Cheung
, and
S. T.
Elbert
,
Int. J. Quantum Chem.
16
,
1069
(
1979
).
6.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
7.
B. O.
Roos
,
Int. J. Quantum Chem.
18
,
175
(
1980
).
8.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
9.
P. Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
10.
G.
Chaban
,
M. W.
Schmidt
, and
M. S.
Gordon
,
Theor. Chem. Acc.
97
,
88
(
1997
).
11.
C.
Angeli
,
S.
Evangelisti
,
R.
Cimiraglia
, and
D.
Maynau
,
J. Chem. Phys.
117
,
10525
(
2002
).
12.
J. E.
Bates
and
T.
Shiozaki
,
J. Chem. Phys.
142
,
044112
(
2015
).
13.
E. G.
Hohenstein
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
,
J. Chem. Phys.
142
,
224103
(
2015
).
14.
R. D.
Reynolds
,
T.
Yanai
, and
T.
Shiozaki
,
J. Chem. Phys.
149
,
014106
(
2018
).
15.
C.
Kollmar
,
K.
Sivalingam
,
B.
Helmich-Paris
,
C.
Angeli
, and
F.
Neese
,
J. Comput. Chem.
40
,
1463
(
2019
).
16.
U.
Meier
and
V.
Staemmler
,
Theor. Chim. Acta
76
,
95
(
1989
).
17.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
18.
E.
Dalgaard
,
Chem. Phys. Lett.
65
,
559
(
1979
).
19.
D. L.
Yeager
,
P.
Albertsen
, and
P.
Jørgensen
,
J. Chem. Phys.
73
,
2811
(
1980
).
20.
D. L.
Yeager
and
P.
Jørgensen
,
Mol. Phys.
39
,
587
(
1980
).
21.
P.
Jørgensen
,
P.
Albertsen
, and
D. L.
Yeager
,
J. Chem. Phys.
72
,
6466
(
1980
).
22.
P.
Jørgensen
,
J.
Olsen
, and
D. L.
Yeager
,
J. Chem. Phys.
75
,
5802
(
1981
).
23.
A.
Igawa
,
D. L.
Yeager
, and
H.
Fukutome
,
J. Chem. Phys.
76
,
5388
(
1982
).
24.
J.
Olsen
,
P.
Jørgensen
, and
D. L.
Yeager
,
J. Chem. Phys.
76
,
527
(
1982
).
25.
J.
Olsen
,
P.
Jørgensen
, and
D. L.
Yeager
,
J. Chem. Phys.
77
,
356
(
1982
).
26.
D. L.
Yeager
,
D.
Lynch
,
J.
Nichols
,
P.
Jørgensen
, and
J.
Olsen
,
J. Phys. Chem.
86
,
2140
(
1982
).
27.
J.
Olsen
,
D. L.
Yeager
, and
P.
Jørgensen
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
1983
), Vol. 54, pp.
1
176
.
28.
P.
Jørgensen
,
P.
Swanstrøm
, and
D. L.
Yeager
,
J. Chem. Phys.
78
,
347
(
1983
).
29.
B. H.
Lengsfield
 III
,
J. Chem. Phys.
73
,
382
(
1980
).
30.
B. H.
Lengsfield
 III
,
J. Chem. Phys.
77
,
4073
(
1982
).
31.
B. H.
Lengsfield
 III
and
B.
Liu
,
J. Chem. Phys.
75
,
478
(
1981
).
32.
H. J. A.
Jensen
and
H.
Ågren
,
Chem. Phys. Lett.
110
,
140
(
1984
).
33.
H. J. A.
Jensen
and
P.
Jørgensen
,
J. Chem. Phys.
80
,
1204
(
1984
).
34.
H. J. A.
Jensen
and
H.
Ågren
,
Chem. Phys.
104
,
229
(
1986
).
35.
H. J. A.
Jensen
,
P.
Jørgensen
, and
H.
Ågren
,
J. Chem. Phys.
87
,
451
(
1987
).
36.
R.
Shepard
and
J.
Simons
,
Int. J. Quantum Chem.
18
,
211
(
1980
).
37.
H.-J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
73
,
2342
(
1980
).
38.
H.-J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
).
39.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
40.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
41.
H.-J.
Werner
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
1987
), Vol. 69, pp.
1
62
.
42.
D. A.
Kreplin
,
P. J.
Knowles
, and
H.-J.
Werner
,
J. Chem. Phys.
150
,
194106
(
2019
).
43.
F.
Lipparini
and
J.
Gauss
,
J. Chem. Theory Comput.
12
,
4284
(
2016
).
44.
Q.
Sun
,
J.
Yang
, and
G. K.-L.
Chan
,
Chem. Phys. Lett.
683
,
291
(
2017
).
45.
Y.
Ma
,
S.
Knecht
,
S.
Keller
, and
M.
Reiher
,
J. Chem. Theory Comput.
13
,
2533
(
2017
).
46.
B. O.
Roos
,
P.
Linse
,
P. E.
Siegbahn
, and
M. R.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
).
47.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
(
1998
).
48.
K.
Andersson
,
P.-Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
49.
50.
P.
Celani
and
H.-J.
Werner
,
J. Chem. Phys.
112
,
5546
(
2000
).
51.
C.
Angeli
,
M.
Pastore
, and
R.
Cimiraglia
,
Theor. Chem. Acc.
117
,
743
(
2007
).
52.
F.
Menezes
,
D.
Kats
, and
H.-J.
Werner
,
J. Chem. Phys.
145
,
124115
(
2016
).
53.
D.
Kats
and
H.-J.
Werner
,
J. Chem. Phys.
150
,
214107
(
2019
).
54.
P. E.
Siegbahn
,
J. Chem. Phys.
72
,
1647
(
1980
).
55.
V. R.
Saunders
and
J. H.
van Lenthe
,
Mol. Phys.
48
,
923
(
1983
).
56.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
57.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
58.
H.
Werner
and
P. J.
Knowles
,
Theor. Chim. Acta
78
,
175
(
1990
).
59.
P. J.
Knowles
and
H.-J.
Werner
,
Theor. Chim. Acta
84
,
95
(
1992
).
60.
P.
Celani
,
H.
Stoll
,
H.-J.
Werner
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2369
(
2004
).
61.
K. R.
Shamasundar
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
135
,
054101
(
2011
).
62.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
,
Chem. Rev.
112
,
108
(
2012
).
63.
F. A.
Evangelista
,
M.
Hanauer
,
A.
Köhn
, and
J.
Gauss
,
J. Chem. Phys.
136
,
204108
(
2012
).
64.
M.
Hanauer
and
A.
Köhn
,
Chem. Phys.
401
,
50
(
2012
).
65.
M.
Hanauer
and
A.
Köhn
,
J. Chem. Phys.
137
,
131103
(
2012
).
66.
M.
Hanauer
and
A.
Köhn
,
J. Chem. Phys.
136
,
204107
(
2012
).
67.
K. K.
Docken
and
J.
Hinze
,
J. Chem. Phys.
57
,
4928
(
1972
).
68.
K.
Ruedenberg
and
K. R.
Sundberg
, in
Quantum Science Methods and Structure
, edited by
J.-L.
Calais
,
O.
Goscinski
,
J.
Linderberg
, and
Y.
Öhrn
(
Springer US
,
Boston, MA
,
1976
), pp.
505
515
.
69.
L. M.
Cheung
,
K. R.
Sundberg
, and
K.
Ruedenberg
,
Int. J. Quantum Chem.
16
,
1103
(
1979
).
70.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S.
Elbert
,
Chem. Phys.
71
,
41
(
1982
).
71.
B. O.
Roos
,
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
1987
), Vol. 69, pp.
399
445
.
72.
J.
Olsen
,
Int. J. Quantum Chem.
111
,
3267
(
2011
).
73.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
de Jong
,
J. Chem. Phys.
147
,
184111
(
2017
).
74.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
75.
D.
Ma
,
G.
Li Manni
, and
L.
Gagliardi
,
J. Chem. Phys.
135
,
044128
(
2011
).
76.
K. D.
Vogiatzis
,
G.
Li Manni
,
S. J.
Stoneburner
,
D.
Ma
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
11
,
3010
(
2015
).
77.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
78.
R. E.
Thomas
,
Q.
Sun
,
A.
Alavi
, and
G. H.
Booth
,
J. Chem. Theory Comput.
11
,
5316
(
2015
).
79.
G.
Li Manni
,
S. D.
Smart
, and
A.
Alavi
,
J. Chem. Theory Comput.
12
,
1245
(
2016
).
80.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
12
,
3674
(
2016
).
81.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
13
,
1595
(
2017
).
82.
J. E. T.
Smith
,
B.
Mussard
,
A. A.
Holmes
, and
S.
Sharma
,
J. Chem. Theory Comput.
13
,
5468
(
2017
).
83.
D.
Zgid
and
M.
Nooijen
,
J. Chem. Phys.
128
,
144116
(
2008
).
84.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
128
,
144117
(
2008
).
85.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
86.
T.
Yanai
,
Y.
Kurashige
,
D.
Ghosh
, and
G. K.-L.
Chan
,
Int. J. Quantum Chem.
109
,
2178
(
2009
).
87.
Y.
Ma
and
H.
Ma
,
J. Chem. Phys.
138
,
224105
(
2013
).
88.
M. W.
Schmidt
and
M. S.
Gordon
,
Annu. Rev. Phys. Chem.
49
,
233
(
1998
).
89.
B.
Levy
and
G.
Berthier
,
Int. J. Quantum Chem.
2
,
307
(
1968
).
90.
B.
Levy
and
G.
Berthier
,
Int. J. Quantum Chem.
3
,
247
(
1969
).
91.
F.
Aquilante
,
T. B.
Pedersen
,
R.
Lindh
,
B. O.
Roos
,
A.
Sánchez de Merás
, and
H.
Koch
,
J. Chem. Phys.
129
,
024113
(
2008
).
92.
W.
Győrffy
,
T.
Shiozaki
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
138
,
104104
(
2013
).
93.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
94.
C.
Köppl
and
H.-J.
Werner
,
J. Chem. Theory Comput.
12
,
3122
(
2016
).
96.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
(
Springer Science & Business Media
,
2006
).
97.
D. R.
Yarkony
,
Chem. Phys. Lett.
77
,
634
(
1981
).
98.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
99.
G. J.
Atchity
and
K.
Ruedenberg
,
J. Chem. Phys.
111
,
2910
(
1999
).
100.
M. P.
Deskevich
,
D. J.
Nesbitt
, and
H.-J.
Werner
,
J. Chem. Phys.
120
,
7281
(
2004
).
101.
E. R.
Sayfutyarova
,
Q.
Sun
,
G. K.-L.
Chan
, and
G.
Knizia
,
J. Chem. Theory Comput.
13
,
4063
(
2017
).
102.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al., Molpro, version 2020.0, a package of ab initio programs,
2020
, see http://www.molpro.net.
103.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
104.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
105.
B. F.
Gherman
and
C. J.
Cramer
,
Coord. Chem. Rev.
253
,
723
(
2009
).
106.
M.
Flock
and
K.
Pierloot
,
J. Phys. Chem. A
103
,
95
(
1999
).
107.
M. F.
Rode
and
H.-J.
Werner
,
Theor. Chem. Acc.
114
,
309
(
2005
).
108.
C. J.
Cramer
,
M.
Włoch
,
P.
Piecuch
,
C.
Puzzarini
, and
L.
Gagliardi
,
J. Phys. Chem. A
110
,
1991
(
2006
).
109.
P. Å.
Malmqvist
,
K.
Pierloot
,
A. R. M.
Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Phys.
128
,
204109
(
2008
).
110.
B. S.
Fales
and
B. G.
Levine
,
J. Chem. Theory Comput.
11
,
4708
(
2015
).
111.
Y.
Guo
,
K.
Sivalingam
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
094111
(
2016
).
112.
L.
Roy
,
M. H.
Al-Afyouni
,
D. E.
DeRosha
,
B.
Mondal
,
I. M.
DiMucci
,
K. M.
Lancaster
,
J.
Shearer
,
E.
Bill
,
W. W.
Brennessel
,
F.
Neese
,
S.
Ye
, and
P. L.
Holland
,
Chem. Sci.
10
,
918
(
2019
).
113.
F.
Menezes
, “
A local complete active space 2nd-order perturbation theory method
,” Ph.D. thesis,
University Stuttgart
,
2016
.
114.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
115.
K.
Andersson
and
B. O.
Roos
,
Chem. Phys. Lett.
191
,
507
(
1992
).

Supplementary Material

You do not currently have access to this content.