The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.

1.
G. V.
Hartland
,
L. V.
Besteiro
,
P.
Johns
, and
A. O.
Govorov
,
ACS Energy Lett.
2
,
1641
(
2017
).
2.
J.
Zhao
,
S. C.
Nguyen
,
R.
Ye
,
B.
Ye
,
H.
Weller
,
G. A.
Somorjai
,
A. P.
Alivisatos
, and
F. D.
Toste
,
ACS Cent. Sci.
3
,
482
(
2017
).
3.
C.
Wang
,
X.-G.
Nie
,
Y.
Shi
,
Y.
Zhou
,
J.-J.
Xu
,
X.-H.
Xia
, and
H.-Y.
Chen
,
ACS Nano
11
,
5897
(
2017
).
4.
M. D.
Brown
,
T.
Suteewong
,
R. S. S.
Kumar
,
V.
D’Innocenzo
,
A.
Petrozza
,
M. M.
Lee
,
U.
Wiesner
, and
H. J.
Snaith
,
Nano Lett.
11
,
438
(
2011
).
5.
C.
Clavero
,
Nat. Photonics
8
,
95
(
2014
).
6.
S. V.
Boriskina
,
T. A.
Cooper
,
L.
Zeng
,
G.
Ni
,
J. K.
Tong
,
Y.
Tsurimaki
,
Y.
Huang
,
L.
Meroueh
,
G.
Mahan
, and
G.
Chen
,
Adv. Opt. Photonics
9
,
775
(
2017
).
7.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
, and
H. A.
Atwater
,
ACS Nano
10
,
957
(
2016
).
8.
A.
Brandstetter-Kunc
,
G.
Weick
,
C. A.
Downing
,
D.
Weinmann
, and
R. A.
Jalabert
,
Phys. Rev. B
94
,
205432
(
2016
).
9.
M. J.
Feldstein
,
C. D.
Keating
,
Y.-H.
Liau
,
M. J.
Natan
, and
N. F.
Scherer
,
J. Am. Chem. Soc.
119
,
6638
(
1997
).
10.
N. S.
Mueller
,
B. G. M.
Vieira
,
F.
Schulz
,
P.
Kusch
,
V.
Oddone
,
E. B.
Barros
,
H.
Lange
, and
S.
Reich
,
ACS Photonics
5
,
3962
(
2018
).
11.
N. S.
Mueller
,
B. G. M.
Vieira
,
D.
Höing
,
F.
Schulz
,
E. B.
Barros
,
H.
Lange
, and
S.
Reich
,
Faraday Discuss.
214
,
159
173
(
2018
).
12.
S. K.
Ghosh
and
T.
Pal
,
Chem. Rev.
107
,
4797
(
2007
).
13.
H.
Lange
,
B. H.
Juárez
,
A.
Carl
,
M.
Richter
,
N. G.
Bastús
,
H.
Weller
,
C.
Thomsen
,
R.
von Klitzing
, and
A.
Knorr
,
Langmuir
28
,
8862
(
2012
).
14.
B. G. M.
Vieira
,
N. S.
Mueller
,
E. B.
Barros
, and
S.
Reich
,
J. Phys. Chem. C
123
,
17951
(
2019
).
15.
M.
Bernardi
,
J.
Mustafa
,
J. B.
Neaton
, and
S. G.
Louie
,
Nat. Commun.
6
,
7044
(
2015
).
16.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
A. M.
Schwartzberg
,
W. A.
Goddard
, and
H. A.
Atwater
,
Phys. Rev. Lett.
118
,
087401
(
2017
).
17.
E.
Minutella
,
F.
Schulz
, and
H.
Lange
,
J. Phys. Chem. Lett.
8
,
4925
(
2017
).
18.
F.
Schulz
,
S.
Tober
, and
H.
Lange
,
Langmuir
33
,
14437
(
2017
).
19.
G. V.
Hartland
,
Chem. Rev.
111
,
3858
(
2011
).
20.
J. R. M.
Saavedra
,
A.
Asenjo-Garcia
, and
F. J.
Garcia de Abajo
,
ACS Photonics
3
,
1637
(
2016
).
21.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).

Supplementary Material

You do not currently have access to this content.