We investigate the interaction of polyfluorene and fluorene/carbazole copolymers bearing various functional groups and side chains with small to large diameter—from 1.7 nm to 9 nm—carbon nanotubes (CNTs) in vacuo. We use variable-charge molecular dynamics simulations based on the reactive force field ReaxFF. We show that non-covalent functionalization of nanotubes, driven by ππ interactions, is effective for all the polymers studied, thanks to their conjugated backbone and regardless of the presence of specific functional groups. The geometry at equilibrium of these polymer/CNT hybrids is analyzed in detail at the scale of each fluorene or carbazole unit. The role of both the functional groups and the alkyl chain length is analyzed in detail. Adsorption of the polymers on the nanotube sidewalls is shown to be either complete—with the whole chain physisorbed—or partial—due to intrachain coiling or interchain repulsion—depending on the initial geometry, number of polymers, and nanotube diameter. Energetic arguments supplement the described geometric features. Both energetic and geometric adsorption features are derived here for the first time for large diameter carbon nanotubes (up to 9 nm) and fluorene/carbazole copolymers having up to 30 monomers and bearing different functional groups. The force field ReaxFF and its available parameterization used for the simulations are validated, thanks to a benchmark and review on higher-level quantum calculations—for simple ππ interacting compounds made up of polycyclic aromatic molecules adsorbed on a graphene sheet or bilayer graphene. Although it is shown that the influence of the nanotube chirality on the adsorption pattern and binding strength cannot be discussed with our method, we highlight that an available force field such as ReaxFF and its parameterization can be transferable to simulate new systems without specific re-parameterization, provided that this model is validated against reference methods or data. This methodology proves to be a valuable tool for optimal polymer design for nanotube functionalization at no re-parameterization cost and could be adapted to simulate and assist the design of other types of molecular systems.

1.
F.
Michelis
,
L.
Bodelot
,
Y.
Bonnassieux
, and
B.
Lebental
, “
Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes
,”
Carbon
95
,
1020
1026
(
2015
).
2.
G. U.
Sumanasekera
,
B. K.
Pradhan
,
H. E.
Romero
,
K. W.
Adu
, and
P. C.
Eklund
, “
Giant thermopower effects from molecular physisorption on carbon nanotubes
,”
Phys. Rev. Lett.
89
(
16
),
166801
(
2002
).
3.
J.
Wang
, “
Carbon-nanotube based electrochemical biosensors: A review
,”
Electroanalysis
17
(
1
),
7
14
(
2005
).
4.
R. A.
Bell
,
M. C.
Payne
, and
A. A.
Mostofi
, “
Does water dope carbon nanotubes?
,”
J. Chem. Phys.
141
(
16
),
164703
(
2014
).
5.
A.
Lekawa-Raus
,
L.
Kurzepa
,
G.
Kozlowski
,
S. C.
Hopkins
,
M.
Wozniak
,
D.
Lukawski
,
B. A.
Glowacki
, and
K. K.
Koziol
, “
Influence of atmospheric water vapour on electrical performance of carbon nanotube fibres
,”
Carbon
87
(
18-28
),
18
(
2015
).
6.
J.
Kong
, “
Nanotube molecular wires as chemical sensors
,”
Science
287
(
5453
),
622
625
(
2000
).
7.
E. S.
Snow
, “
Chemical detection with a single-walled carbon nanotube capacitor
,”
Science
307
(
5717
),
1942
1945
(
2005
).
8.
J. A.
Robinson
,
E. S.
Snow
,
S. C.
Badescu
,
T. L.
Reinecke
, and
F.
Keith Perkins
, “
Role of defects in single-walled carbon nanotube chemical sensors
,”
Nano Lett.
6
(
8
),
1747
1751
(
2006
).
9.
V.
Schroeder
,
S.
Savagatrup
,
M.
He
,
S.
Lin
, and
T. M.
Swager
, “
Carbon nanotube chemical sensors
,”
Chem. Rev.
119
(
1
),
599
663
(
2018
).
10.
Y.
Li
,
M.
Hodak
,
W.
Lu
, and
J.
Bernholc
, “
Mechanisms of NH3 and NO2 detection in carbon-nanotube-based sensors: An ab initio investigation
,”
Carbon
101
,
177
183
(
2016
).
11.
A. R.
Rocha
,
M.
Rossi
,
A.
Fazzio
, and
A. J. R.
da Silva
, “
Designing real nanotube-based gas sensors
,”
Phys. Rev. Lett.
100
(
17
),
176803
(
2008
).
12.
K.
Lee
,
J.-H.
Kwon
,
S.-ll
Moon
,
W.-S.
Cho
,
B.-K.
Ju
, and
Y.-H
Lee
, “
pH sensitive multiwalled carbon nanotubes
,”
Mater. Lett.
61
(
14-15
),
3201
3203
(
2007
).
13.
W.
Zhao
,
C.
Song
, and
P. E.
Pehrsson
, “
Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification
,”
J. Am. Chem. Soc.
124
(
42
),
12418
12419
(
2002
).
14.
T.
Fujigaya
and
N.
Nakashima
, “
Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants
,”
Sci. Technol. Adv. Mater.
16
(
2
),
024802
(
2015
).
15.
C. A.
Hunter
and
J. K. M.
Sanders
, “
The nature of π − π interactions
,”
J. Am. Chem. Soc.
112
(
14
),
5525
5534
(
1990
).
16.
I.
Pelech
,
R.
Pelech
,
A.
Kaczmarek
,
J.
Anna
, and
D.
Moszynski
, “
Effect of treating method on the physicochemical properties of amine-functionalized carbon nanotubes
,”
Int. J. Mater. Res.
107
(
1
),
35
43
(
2016
).
17.
R. M.
Tromp
,
A.
Afzali
,
M.
Freitag
,
D. B.
Mitzi
, and
Z.
Chen
, “
Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes
,”
Nano Lett.
8
(
2
),
469
472
(
2008
).
18.
J.-Y.
Hwang
,
A.
Nish
,
D.
James
,
S.
Douven
,
C.-W.
Chen
,
L.-C.
Chen
, and
R. J.
Nicholas
, “
Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes
,”
J. Am. Chem. Soc.
130
(
11
),
3543
3553
(
2008
).
19.
C.
Pramanik
,
J. R.
Gissinger
,
S.
Kumar
, and
H.
Heinz
, “
Carbon nanotube dispersion in solvents and polymer solutions: Mechanisms, assembly, and preferences
,”
ACS Nano
11
(
12
),
12805
12816
(
2017
).
20.
F.
Chen
,
B.
Wang
,
Y.
Chen
, and
L.-J.
Li
, “
Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers
,”
Nano Lett.
7
(
10
),
3013
3017
(
2007
).
21.
F. A.
Lemasson
,
T.
Strunk
,
P.
Gerstel
,
H.
Frank
,
S.
Lebedkin
,
C.
Barner-Kowollik
,
W.
Wenzel
,
M. M.
Kappes
, and
M.
Mayor
, “
Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly(n-decyl-2,7-carbazole)
,”
J. Am. Chem. Soc.
133
(
4
),
652
655
(
2011
).
22.
G. J.
Brady
,
Y.
Joo
,
M.-Y.
Wu
,
M. J.
Shea
,
P.
Gopalan
, and
M. S.
Arnold
, “
Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio
,”
ACS Nano
8
(
11
),
11614
11621
(
2014
).
23.
W.
Gomulya
,
J.
Gao
, and
M. A.
Loi
, “
Conjugated polymer-wrapped carbon nanotubes: Physical properties and device applications
,”
Eur. Phys. J. B
86
,
404
(
2013
).
24.
P.-I.
Wang
,
C.-Yi
Tsai
,
Y.-J.
Hsiao
,
J.-C.
Jiang
, and
D.-J.
Liaw
, “
High-purity semiconducting single-walled carbon nanotubes via selective dispersion in solution using fully conjugated polytriarylamines
,”
Macromolecules
49
(
22
),
8520
8529
(
2016
).
25.
A.
Nish
,
J.-Y.
Hwang
,
D.
James
, and
J. R.
Nicholas
, “
Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers
,”
Nat. Nanotechnol.
2
(
10
),
640
646
(
2007
).
26.
F.
Boon
,
D.
Simon
,
L.
Cutaia
,
D.
Olivier
,
A.
Minoia
,
B.
Ruelle
,
S.
Clément
,
O.
Coulembier
,
J.
Cornil
,
P.
Dubois
, and
R.
Lazzaroni
, “
Synthesis and characterization of nanocomposites based on functional regioregular poly(3-hexylthiophene) and multiwall carbon nanotubes
,”
Macromol. Rapid Commun.
31
(
16
),
1427
1434
(
2010
).
27.
W. Z.
Wang
,
W. F.
Li
,
X. Y.
Pan
,
C. M.
Li
,
L.-J.
Li
,
Y. G.
Mu
,
J. A.
Rogers
, and
M. B.
Chan-Park
, “
Degradable conjugated polymers: Synthesis and applications in enrichment of semiconducting single-walled carbon nanotubes
,”
Adv. Funct. Mater.
21
(
9
),
1643
1651
(
2011
).
28.
J.
Gao
,
M. A.
Loi
,
E. J. F.
de Carvalho
, and
M. C.
dos Santos
, “
Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids
,”
ACS Nano
5
(
5
),
3993
3999
(
2011
).
29.
W.
Gomulya
,
G. D.
Costanzo
,
E. J. F.
de Carvalho
,
S. Z.
Bisri
,
V.
Derenskyi
,
M.
Fritsch
,
N.
Fröhlich
,
S.
Allard
,
P.
Gordiichuk
,
A.
Herrmann
,
S. J.
Marrink
,
M. C.
dos Santos
,
U.
Scherf
, and
M. A.
Loi
, “
Semiconducting single-walled carbon nanotubes on demand by polymer wrapping
,”
Adv. Mater.
25
(
21
),
2948
2956
(
2013
).
30.
S.
Ishihara
,
J. M.
Azzarelli
,
M.
Krikorian
, and
T. M.
Swager
, “
Ultratrace detection of toxic chemicals: Triggered disassembly of supramolecular nanotube wrappers
,”
J. Am. Chem. Soc.
138
(
26
),
8221
8227
(
2016
).
31.
G.
Zucchi
,
B.
Lebental
,
L.
Loisel
,
S.
Ramachandran
,
A. F.
Guttierez
,
X. Y.
Wang
,
M.
Godumala
, and
L.
Bodelot
, “
Capteurs chimiques à base de nanotubes de carbone fonctionnalisés par des polymères conjugués pour l’analyse en milieu aqueux
,” French patent FR3064999 (12 April 2018).
32.
B.
Lebental
,
R.
Benda
,
L.
Bodelot
,
I.
Florea
,
M.
Godumala
,
B.
Gusarov
,
A. F.
Guttierez
,
L.
Loisel
,
E.
Merliot
,
S.
Ramachandran
,
X. Y.
Wang
, and
G.
Zucchi
, “
Carbon nanotube sensor array for water monitoring with conjugated polymers
,” in
C’NANO 2017, The Nanoscience Meeting, December 2017
,
Lyon, France
,
2017
.
33.
X. Q.
He
,
S.
Kitipornchai
, and
K. M.
Liew
, “
Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction
,”
J. Mech. Phys. Solids
53
(
2
),
303
326
(
2005
).
34.
K.
Li
and
B.
Gu
, “
Molecular dynamics investigation of the physisorption and interfacial characteristics of NBR chains on carbon nanotubes with different characteristics
,”
AIP Adv.
7
(
7
),
075106
(
2017
).
35.
Y.
Li
,
H. ick
Kim
,
B.
Wei
,
J.
Kang
,
J. boong
Choi
,
J.-Do
Nam
, and
J.
Suhr
, “
Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions
,”
Nanoscale
7
(
34
),
14299
14304
(
2015
).
36.
S. D.
Stranks
,
S. N.
Habisreutinger
,
B.
Dirks
, and
R. J.
Nicholas
, “
Novel carbon nanotube-conjugated polymer nanohybrids produced by multiple polymer processing
,”
Adv. Mater.
25
(
31
),
4365
4371
(
2013
).
37.
M.
Bernardi
,
M.
Giulianini
, and
J. C.
Grossman
, “
Self-assembly and its impact on interfacial charge transfer in carbon nanotube/p3ht solar cells
,”
ACS Nano
4
(
11
),
6599
6606
(
2010
).
38.
C.
Bounioux
,
E. A.
Katz
, and
R.
Yerushalmi Rozen
, “
Conjugated polymers—Carbon nanotubes-based functional materials for organic photovoltaics: A critical review
,”
Polym. Adv. Technol.
23
(
8
),
1129
1140
(
2012
).
39.
Y.
Kanai
and
J. C.
Grossman
, “
Role of semiconducting and metallic tubes in p3ht/carbon-nanotube photovoltaic heterojunctions: Density functional theory calculations
,”
Nano Lett.
8
(
3
),
908
912
(
2008
).
40.
F.
Massuyeau
,
J.
Wéry
,
J.-L.
Duvail
,
S.
Lefrant
,
Y.
Abu
,
C.
Ewels
, and
E.
Faulques
, “
Electronic interaction in composites of a conjugated polymer and carbon nanotubes: First-principles calculation and photophysical approaches
,”
Beilstein J. Nanotechnol.
6
,
1138
1144
(
2015
).
41.
J.
Fennell
,
H.
Hamaguchi
,
B.
Yoon
, and
T.
Swager
, “
Chemiresistor devices for chemical warfare agent detection based on polymer wrapped single-walled carbon nanotubes
,”
Sensors
17
(
5
),
982
(
2017
).
42.
M.
Wan Chik
,
Z.
Hussain
,
M.
Zulkefeli
,
M.
Tripathy
,
S.
Kumar
,
A. B. A.
Majeed
, and
K.
Byrappa
, “
Polymer-wrapped single-walled carbon nanotubes: A transformation toward better applications in healthcare
,”
Drug Delivery Transl. Res.
9
(
2
),
578
594
(
2018
).
43.
F.
Wang
,
H.
Gu
, and
M.
Timothy
, “
Swager. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents
,”
J. Am. Chem. Soc.
130
(
16
),
5392
5393
(
2008
).
44.
F.
Wang
,
Y.
Yang
, and
T. M.
Swager
, “
Molecular recognition for high selectivity in carbon nanotube/polythiophene chemiresistors
,”
Angew. Chem., Int. Ed.
47
(
44
),
8394
8396
(
2008
).
45.
R. R.
Johnson
,
A. T. C.
Johnson
, and
M. L.
Klein
, “
Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics
,”
Nano Lett.
8
(
1
),
69
75
(
2008
).
46.
L.
Santiago-Rodríguez
,
G.
Sánchez-Pomales
, and
C. R.
Cabrera
, “
DNA-functionalized carbon nanotubes: Synthesis, self-assembly, and applications
,”
Isr. J. Chem.
50
(
3
),
277
290
(
2010
).
47.
J. M.
Salazar-Rios
,
W.
Talsma
,
V.
Derenskyi
,
W.
Gomulya
,
T.
Keller
,
M.
Fritsch
,
S.
Kowalski
,
E.
Preis
,
M.
Wang
,
S.
Allard
,
G. C.
Bazan
,
U.
Scherf
,
M.
Cristina dos Santos
, and
M. A.
Loi
, “
Understanding the selection mechanism of the polymer wrapping technique toward semiconducting carbon nanotubes
,”
Small Methods
2
(
4
),
1700335
(
2018
).
48.
A.
Strachan
,
A. C. T.
van Duin
,
D.
Chakraborty
,
S.
Dasgupta
, and
W. A.
Goddard
, “
Shock waves in high-energy materials: The initial chemical events in nitramine RDX
,”
Phys. Rev. Lett.
91
(
9
),
098301
(
2003
).
49.
F.
Tournus
and
J.-C.
Charlier
, “
Ab initio study of benzene adsorption on carbon nanotubes
,”
Phys. Rev. B
71
(
16
),
165421
(
2005
).
50.
F.
Tournus
,
S.
Latil
,
M. I.
Heggie
, and
J.-C.
Charlier
, “
π-stacking interaction between carbon nanotubes and organic molecules
,”
Phys. Rev. B
72
(
7
),
075431
(
2005
).
51.
S. M.
Kozlov
,
F.
Viñes
, and
A.
Görling
, “
On the interaction of polycyclic aromatic compounds with graphene
,”
Carbon
50
(
7
),
2482
2492
(
2012
).
52.
H.
Ruuska
and
T. A.
Pakkanen
, “
Ab initio study of interlayer interaction of graphite: Benzene-coronene and coronene dimer two-layer models
,”
J. Phys. Chem. B
105
(
39
),
9541
9547
(
2001
).
53.
F.
Ortmann
,
F.
Bechstedt
, and
W. G.
Schmidt
, “
Semiempirical van der Waals correction to the density functional description of solids and molecular structures
,”
Phys. Rev. B
73
(
20
),
205101
(
2006
).
54.
R.
Zacharia
,
H.
Ulbricht
, and
T.
Hertel
, “
Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons
,”
Phys. Rev. B
69
(
15
),
155406
(
2004
).
55.
O. V.
Ershova
,
T. C.
Lillestolen
, and
E.
Bichoutskaia
, “
Study of polycyclic aromatic hydrocarbons adsorbed on graphene using density functional theory with empirical dispersion correction
,”
Phys. Chem. Chem. Phys.
12
(
24
),
6483
(
2010
).
56.
J.-Da
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
(
44
),
6615
(
2008
).
57.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
(
15
),
1787
1799
(
2006
).
58.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
, “
Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
,”
Phys. Chem. Chem. Phys.
8
(
17
),
1985
1993
(
2006
).
59.
S.
Grimme
, “
Density functional theory with london dispersion corrections
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
2
),
211
228
(
2011
).
60.
J.
Björk
,
F.
Hanke
,
C.-A.
Palma
,
P.
Samori
,
M.
Cecchini
, and
M.
Persson
, “
Adsorption of aromatic and anti-aromatic systems on graphene through π-π stacking
,”
J. Phys. Chem. Lett.
1
(
23
),
3407
3412
(
2010
).
61.
S.
Bailey
,
D.
Visontai
,
C. J.
Lambert
,
M. R.
Bryce
,
H.
Frampton
, and
D.
Chappell
, “
A study of planar anchor groups for graphene-based single-molecule electronics
,”
J. Chem. Phys.
140
(
5
),
054708
(
2014
).
62.
Y.
Guo
and
W.
Guo
, “
Interlayer energy-optimum stacking registry for two curved graphene sheets of nanometre dimensions
,”
Mol. Simul.
34
(
8
),
813
819
(
2008
).
63.
Y.
Shibuta
and
J. A.
Elliott
, “
Interaction between two graphene sheets with a turbostratic orientational relationship
,”
Chem. Phys. Lett.
512
(
4-6
),
146
150
(
2011
).
64.
J.-C.
Charlier
,
X.
Gonze
, and
J.-P.
Michenaud
, “
Graphite interplanar bonding: Electronic delocalization and van der Waals interaction
,”
Europhy. Lett.
28
(
6
),
403
408
(
1994
).
65.
E.
Mostaani
,
N. D.
Drummond
, and
V. I.
Fal’ko
, “
Quantum Monte Carlo calculation of the binding energy of bilayer graphene
,”
Phys. Rev. Lett.
115
(
11
),
115501
(
2015
).
66.
M. A.
Vincent
and
I. H.
Hillier
, “
Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation
,”
J. Chem. Inf. Model.
54
(
8
),
2255
2260
(
2014
).
67.
I. V.
Lebedeva
,
A. A.
Knizhnik
,
A. M.
Popov
,
Y. E.
Lozovik
, and
B. V.
Potapkin
, “
Interlayer interaction and relative vibrations of bilayer graphene
,”
Phys. Chem. Chem. Phys.
13
(
13
),
5687
(
2011
).
68.
W.
Wang
,
T.
Sun
,
Y.
Zhang
, and
Y.-B.
Wang
, “
Substituent effects in the π − π interaction between graphene and benzene: An indication for the noncovalent functionalization of graphene
,”
Comput. Theor. Chem.
1046
,
64
69
(
2014
).
69.
V.
Barone
,
M.
Casarin
,
D.
Forrer
,
M.
Pavone
,
M.
Sambi
, and
A.
Vittadini
, “
Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases
,”
J. Comput. Chem.
30
(
6
),
934
939
(
2009
).
70.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
, “
Van der Waals density functional for general geometries
,”
Phys. Rev. Lett.
92
(
24
),
246401
(
2004
).
71.
Y.-H.
Zhang
,
K.-G.
Zhou
,
K.-F.
Xie
,
J.
Zeng
,
H.-L.
Zhang
, and
Y.
Peng
, “
Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: Effects of organic donor, acceptor and metal atoms
,”
Nanotechnology
21
(
6
),
065201
(
2010
).
72.
E. G.
Gordeev
,
M. V.
Polynski
, and
V. P.
Ananikov
, “
Fast and accurate computational modeling of adsorption on graphene: A dispersion interaction challenge
,”
Phys. Chem. Chem. Phys.
15
(
43
),
18815
(
2013
).
73.
W.
Wang
,
Y.
Zhang
, and
Y.-B.
Wang
, “
Noncovalent π − π interaction between graphene and aromatic molecule: Structure, energy, and nature
,”
J. Chem. Phys.
140
(
9
),
094302
(
2014
).
74.
A. D.
MacKerell
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
,
J. D.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph-McCarthy
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
W. E.
Reiher
,
B.
Roux
,
M.
Schlenkrich
,
J. C.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiórkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
, “
All-atom empirical potential for molecular modeling and dynamics studies of proteins†
,”
J. Phys. Chem. B
102
(
18
),
3586
3616
(
1998
).
75.
W. R. P.
Scott
,
P. H.
Hünenberger
,
I. G.
Tironi
,
A. E.
Mark
,
S. R.
Billeter
,
J.
Fennen
,
A. E.
Torda
,
T.
Huber
,
P.
Krüger
, and
W. F.
van Gunsteren
, “
The GROMOS biomolecular simulation program package
,”
J. Phys. Chem. A
103
(
19
),
3596
3607
(
1999
).
76.
D. A.
Pearlman
,
D. A.
Case
,
J. W.
Caldwell
,
W. S.
Ross
,
T. E.
Cheatham
,
S.
DeBolt
,
D.
Ferguson
,
S.
George
, and
P.
Kollman
, “
AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules
,”
Comput. Phys. Commun.
91
(
1-3
),
1
41
(
1995
).
77.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
(
19
),
5179
5197
(
1995
).
78.
N. L.
Allinger
,
Y. H.
Yuh
, and
J. H.
Lii
, “
Molecular mechanics. The MM3 force field for hydrocarbons. 1
,”
J. Am. Chem. Soc.
111
(
23
),
8551
8566
(
1989
).
79.
H.
Sun
, “
Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters
,”
J. Comput. Chem.
15
(
7
),
752
768
(
1994
).
80.
H.
Sun
,
S. J.
Mumby
,
J. R.
Maple
, and
A. T.
Hagler
, “
An ab initio CFF93 all-atom force field for polycarbonates
,”
J. Am. Chem. Soc.
116
(
7
),
2978
2987
(
1994
).
81.
H.
Sun
, “
COMPASS: An ab initio force-field optimized for condensed-phase Applications Overview with details on alkane and benzene compounds
,”
J. Phys. Chem. B
102
(
38
),
7338
7364
(
1998
).
82.
J. R.
Maple
,
M.-J.
Hwang
,
T. P.
Stockfisch
,
U.
Dinur
,
M.
Waldman
,
C. S.
Ewig
, and
A. T.
Hagler
, “
Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules
,”
J. Comput. Chem.
15
(
2
),
162
182
(
1994
).
83.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
(
9
),
1157
1174
(
2004
).
84.
S.
Lifson
,
A. T.
Hagler
, and
P.
Dauber
, “
Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the c:o.cntdot..cntdot..cntdot.H- hydrogen bonds
,”
J. Am. Chem. Soc.
101
(
18
),
5111
5121
(
1979
).
85.
P.
Dauber-Osguthorpe
,
V. A.
Roberts
,
D. J.
Osguthorpe
,
J.
Wolff
,
M.
Genest
, and
A. T.
Hagler
, “
Structure and energetics of ligand binding to proteins:escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system
,”
Proteins: Struct., Funct., Genet.
4
(
1
),
31
47
(
1988
).
86.
J.
Liu
,
J.
Moo-Young
,
M.
McInnis
,
M. A.
Pasquinelli
, and
L.
Zhai
, “
Conjugated polymer assemblies on carbon nanotubes
,”
Macromolecules
47
(
2
),
705
712
(
2014
).
87.
H.
Heinz
,
T.-J.
Lin
,
R. K.
Mishra
, and
F. S.
Emami
, “
Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field
,”
Langmuir
29
(
6
),
1754
1765
(
2013
).
88.
A. K.
Rappe
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
, and
W. M.
Skiff
, “
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
,”
J. Am. Chem. Soc.
114
(
25
),
10024
10035
(
1992
).
89.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
, “
DREIDING: A generic force field for molecular simulations
,”
J. Phys. Chem.
94
(
26
),
8897
8909
(
1990
).
90.
S. S.
Tallury
and
M. A.
Pasquinelli
, “
Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes
,”
J. Phys. Chem. B
114
(
29
),
9349
9355
(
2010
).
91.
S. S.
Tallury
and
M. A.
Pasquinelli
, “
Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes
,”
J. Phys. Chem. B
114
(
12
),
4122
4129
(
2010
).
92.
F.
Chen
,
W.
Zhang
,
M.
Jia
,
W.
Li
,
X.-F.
Fan
,
J.-L.
Kuo
,
Y.
Chen
,
M. B.
Chan-Park
,
A.
Xia
, and
L.-J.
Li
, “
Energy transfer from photo-excited fluorene polymers to single-walled carbon nanotubes
,”
J. Phys. Chem. C
113
(
33
),
14946
14952
(
2009
).
93.
A. C. T.
van Duin
,
M. A. J.
Baas
, and
B.
van de Graaf
, “
Delft molecular mechanics: A new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation
,”
J. Chem. Soc., Faraday Trans.
90
(
19
),
2881
(
1994
).
94.
A. K.
Rappe
and
W. A.
Goddard
, “
Charge equilibration for molecular dynamics simulations
,”
J. Phys. Chem.
95
(
8
),
3358
3363
(
1991
).
95.
J.
Chen
and
T. J.
Martínez
, “
QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics
,”
Chem. Phys. Lett.
438
(
4-6
),
315
320
(
2007
).
96.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
(
41
),
9396
9409
(
2001
).
97.
Y. K.
Shin
,
L.
Gai
,
S.
Raman
, and
A. C. T.
van Duin
, “
Development of a ReaxFF reactive force field for the pt–ni alloy catalyst
,”
J. Phys. Chem. A
120
(
41
),
8044
8055
(
2016
).
98.
E.
Zaminpayma
and
K.
Mirabbaszadeh
, “
Interaction between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field
,”
Comput. Mater. Sci.
58
,
7
11
(
2012
).
99.
H. M.
Aktulga
,
S. A.
Pandit
,
A. C. T.
van Duin
, and
A. Y.
Grama
, “
Reactive molecular dynamics: Numerical methods and algorithmic techniques
,”
SIAM J. Sci. Comput.
34
(
1
),
C1
C23
(
2012
).
100.
H. M.
Aktulga
,
J. C.
Fogarty
,
S. A.
Pandit
, and
A. Y.
Grama
, “
Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
,”
Parallel Comput.
38
(
4-5
),
245
259
(
2012
).
101.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
102.
See https://www.samson-connect.net/ for information about SAMSON software.
103.
X.
Wang
,
Q.
Lin
,
S.
Ramachandran
,
G.
Pembouong
,
R. B.
Pansu
,
I.
Leray
,
B.
Lebental
, and
G.
Zucchi
, “
Optical chemosensors for metal ions in aqueous medium with polyfluorene derivatives: Sensitivity, selectivity and regeneration
,”
Sens. Actuators, B
286
,
521
532
(
2019
).
104.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
, “
ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
,”
J. Phys. Chem. A
112
(
5
),
1040
1053
(
2008
).
105.
A. J.
Gellman
and
K. R.
Paserba
, “
Kinetics and mechanism of oligomer desorption from surfaces: n-Alkanes on graphite
,”
J. Phys. Chem. B
106
(
51
),
13231
13241
(
2002
).
106.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
, “
Parametrization and benchmark of DFTB3 for organic molecules
,”
J. Chem. Theory Comput.
9
(
1
),
338
354
(
2012
).
107.
T. O.
Wehling
,
K. S.
Novoselov
,
S. V.
Morozov
,
E. E.
Vdovin
,
M. I.
Katsnelson
,
A. K.
Geim
, and
A. I.
Lichtenstein
, “
Molecular doping of graphene
,”
Nano Lett.
8
(
1
),
173
177
(
2008
).

Supplementary Material

You do not currently have access to this content.