Metal halide perovskites constitute a new type of semiconducting materials with long charge carrier lifetimes and efficient light-harvesting. The performance of perovskite solar cells and related devices is limited by nonradiative charge and energy losses, facilitated by defects. Combining nonadiabatic molecular dynamics and time-domain density functional theory, we demonstrate that charge losses depend strongly on the defect chemical state. By considering an extra Pb atom in CH3NH3PbI3, which is a common defect in lead halide perovskites, we investigate its influence on charge trapping and recombination. In a chemically inert form as a Pb interstitial, the extra Pb atom has only a mild influence on charge recombination. However, if the extra Pb atom binds to a native Pb atom to form a dimer, the charge trapping and recombination are greatly accelerated because the Pb-dimer creates a localized midgap trap state that couples strongly to the perovskite valence band edge. Holes disappear from the valence band two orders of magnitude faster than in the pristine perovskite and recombine with conduction band electrons one order of magnitude faster. The simulations identify the phonon modes involved in the nonradiative charge trapping and recombination and highlight the importance of rapid decoherence within the electronic subsystem for long carrier lifetimes. The detailed atomistic analysis of the charge trapping and recombination mechanisms enriches the understanding of defect properties and provides theoretical guidance for improving perovskite performance.

1.
National Renewable Energy Laboratory
, Best Research-Cell Efficiency,
2018
, www.nrel.gov/pv/assets/images/efficiency_chart.jpg.
2.
M.
Saliba
,
T.
Matsui
,
K.
Domanski
,
J.-Y.
Seo
,
A.
Ummadisingu
,
S. M.
Zakeeruddin
,
J.-P.
Correa-Baena
,
W. R.
Tress
,
A.
Abate
, and
A.
Hagfeldt
,
Science
354
(
6309
),
206
209
(
2016
).
3.
W. S.
Yang
,
B.-W.
Park
,
E. H.
Jung
,
N. J.
Jeon
,
Y. C.
Kim
,
D. U.
Lee
,
S. S.
Shin
,
J.
Seo
,
E. K.
Kim
, and
J. H.
Noh
,
Science
356
(
6345
),
1376
1379
(
2017
).
4.
W.
Li
,
R.
Long
,
J. F.
Tang
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
10
(
13
),
3788
3804
(
2019
).
5.
M.
Kar
and
T.
Korzdorfer
,
J. Chem. Phys.
149
(
21
),
214701
(
2018
).
6.
L.
Zuo
,
H.
Guo
,
S.
Jariwala
,
N.
De Marco
,
S.
Dong
,
R.
DeBlock
,
D. S.
Ginger
,
B.
Dunn
,
M.
Wang
, and
Y.
Yang
,
Sci. Adv.
3
(
8
),
e1700106
(
2017
).
7.
A.
Fraccarollo
,
L.
Canti
,
L.
Marchese
, and
M.
Cossi
,
J. Chem. Phys.
146
(
23
),
234703
(
2017
).
8.
W. S.
Yang
,
J. H.
Noh
,
N. J.
Jeon
,
Y. C.
Kim
,
S.
Ryu
,
J.
Seo
, and
S. I.
Seok
,
Science
348
(
6240
),
1234
1237
(
2015
).
9.
D.
Bi
,
C.
Yi
,
J.
Luo
,
J.-D.
Décoppet
,
F.
Zhang
,
S. M.
Zakeeruddin
,
X.
Li
,
A.
Hagfeldt
, and
M.
Grätzel
,
Nat. Energy
1
,
16142
(
2016
).
10.
D.-Y.
Son
,
J.-W.
Lee
,
Y. J.
Choi
,
I.-H.
Jang
,
S.
Lee
,
P. J.
Yoo
,
H.
Shin
,
N.
Ahn
,
M.
Choi
, and
D.
Kim
,
Nat. Energy
1
,
16081
(
2016
).
11.
H.
Tan
,
A.
Jain
,
O.
Voznyy
,
X.
Lan
,
F. P. G.
de Arquer
,
J. Z.
Fan
,
R.
Quintero-Bermudez
,
M.
Yuan
,
B.
Zhang
, and
Y.
Zhao
,
Science
355
(
6326
),
722
726
(
2017
).
12.
G.
Xing
,
N.
Mathews
,
S.
Sun
,
S. S.
Lim
,
Y. M.
Lam
,
M.
Grätzel
,
S.
Mhaisalkar
, and
T. C.
Sum
,
Science
342
(
6156
),
344
347
(
2013
).
13.
K.
Huang
,
K.
Lai
,
C. L.
Yan
, and
W. B.
Zhang
,
J. Chem. Phys.
147
(
16
),
164703
(
2017
).
14.
Q.
Dong
,
Y.
Fang
,
Y.
Shao
,
P.
Mulligan
,
J.
Qiu
,
L.
Cao
, and
J.
Huang
,
Science
347
(
6225
),
967
970
(
2015
).
15.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
(
6156
),
341
344
(
2013
).
16.
D.
Shi
,
V.
Adinolfi
,
R.
Comin
,
M.
Yuan
,
E.
Alarousu
,
A.
Buin
,
Y.
Chen
,
S.
Hoogland
,
A.
Rothenberger
, and
K.
Katsiev
,
Science
347
(
6221
),
519
522
(
2015
).
17.
V.
Gonzalez-Pedro
,
E. J.
Juarez-Perez
,
W.-S.
Arsyad
,
E. M.
Barea
,
F.
Fabregat-Santiago
,
I.
Mora-Sero
, and
J.
Bisquert
,
Nano Lett.
14
(
2
),
888
893
(
2014
).
18.
C.
Wehrenfennig
,
G. E.
Eperon
,
M. B.
Johnston
,
H. J.
Snaith
, and
L. M.
Herz
,
Adv. Mater.
26
(
10
),
1584
1589
(
2014
).
19.
O. F.
Williams
,
Z. K.
Guo
,
J.
Hu
,
L.
Yan
,
W.
You
, and
A. M.
Moran
,
J. Chem. Phys.
148
(
13
),
134706
(
2018
).
20.
J.
Liu
,
L.
Jin
,
Z.
Jiang
,
L.
Liu
,
L.
Himanen
,
J.
Wei
,
N.
Zhang
,
D.
Wang
, and
C. L.
Jia
,
J. Chem. Phys.
149
(
24
),
244122
(
2018
).
21.
G. F.
Samu
,
C.
Janáky
, and
P. V.
Kamat
,
ACS Energy Lett.
2
(
8
),
1860
1861
(
2017
).
22.
K. G.
Stamplecoskie
,
J. S.
Manser
, and
P. V.
Kamat
,
Energy Environ. Sci.
8
(
1
),
208
215
(
2015
).
23.
N.-G.
Park
,
J. Phys. Chem. Lett.
4
(
15
),
2423
2429
(
2013
).
24.
H.-S.
Kim
,
J.-W.
Lee
,
N.
Yantara
,
P. P.
Boix
,
S. A.
Kulkarni
,
S.
Mhaisalkar
,
M.
Grätzel
, and
N.-G.
Park
,
Nano Lett.
13
(
6
),
2412
2417
(
2013
).
25.
W.-J.
Yin
,
T.
Shi
, and
Y.
Yan
,
Appl. Phys. Lett.
104
(
6
),
063903
(
2014
).
26.
W. J.
Yin
,
T.
Shi
, and
Y.
Yan
,
Adv. Mater.
26
(
27
),
4653
4658
(
2014
).
27.
A.
Buin
,
R.
Comin
,
J.
Xu
,
A. H.
Ip
, and
E. H.
Sargent
,
Chem. Mater.
27
(
12
),
4405
4412
(
2015
).
28.
A.
Buin
,
P.
Pietsch
,
J.
Xu
,
O.
Voznyy
,
A. H.
Ip
,
R.
Comin
, and
E. H.
Sargent
,
Nano Lett.
14
(
11
),
6281
6286
(
2014
).
29.
W.-J.
Yin
,
J.-H.
Yang
,
J.
Kang
,
Y.
Yan
, and
S.-H.
Wei
,
J. Mater. Chem. A
3
(
17
),
8926
8942
(
2015
).
30.
A.
Walsh
,
D. O.
Scanlon
,
S.
Chen
,
X.
Gong
, and
S. H.
Wei
,
Angew. Chem., Int. Ed.
54
(
6
),
1791
1794
(
2015
).
31.
J. M.
Azpiroz
,
E.
Mosconi
,
J.
Bisquert
, and
F.
De Angelis
,
Energy Environ. Sci.
8
(
7
),
2118
2127
(
2015
).
32.
P.
Delugas
,
C.
Caddeo
,
A.
Filippetti
, and
A.
Mattoni
,
J. Phys. Chem. Lett.
7
(
13
),
2356
2361
(
2016
).
33.
K. X.
Steirer
,
P.
Schulz
,
G.
Teeter
,
V.
Stevanovic
,
M.
Yang
,
K.
Zhu
, and
J. J.
Berry
,
ACS Energy Lett.
1
(
2
),
360
366
(
2016
).
34.
J.
Kim
,
S.-H.
Lee
,
J. H.
Lee
, and
K.-H.
Hong
,
J. Phys. Chem. Lett.
5
(
8
),
1312
1317
(
2014
).
35.
J. M.
Frost
,
K. T.
Butler
,
F.
Brivio
,
C. H.
Hendon
,
M.
Van Schilfgaarde
, and
A.
Walsh
,
Nano Lett.
14
(
5
),
2584
2590
(
2014
).
36.
W.
Ming
,
S.
Chen
, and
M.-H.
Du
,
J. Mater. Chem. A
4
(
43
),
16975
16981
(
2016
).
37.
Y.
Tian
,
M.
Peter
,
E.
Unger
,
M.
Abdellah
,
K.
Zheng
,
T.
Pullerits
,
A.
Yartsev
,
V.
Sundström
, and
I. G.
Scheblykin
,
Phys. Chem. Chem. Phys.
17
(
38
),
24978
24987
(
2015
).
38.
M. L.
Agiorgousis
,
Y.-Y.
Sun
,
H.
Zeng
, and
S.
Zhang
,
J. Am. Chem. Soc.
136
(
41
),
14570
14575
(
2014
).
39.
J.
Kang
and
L.-W.
Wang
,
J. Phys. Chem. Lett.
8
(
2
),
489
493
(
2017
).
40.
Z.
Xiao
,
W.
Meng
,
J.
Wang
, and
Y.
Yan
,
Phys. Chem. Chem. Phys.
18
(
37
),
25786
25790
(
2016
).
41.
W.-W.
Wang
,
J.-S.
Dang
,
R.
Jono
,
H.
Segawa
, and
M.
Sugimoto
,
Chem. Sci.
9
(
13
),
3341
3353
(
2018
).
42.
Y.
Zhao
,
W.
Zhou
,
W.
Ma
,
S.
Meng
,
H.
Li
,
J.
Wei
,
R.
Fu
,
K.
Liu
,
D.
Yu
, and
Q.
Zhao
,
ACS Energy Lett.
1
(
1
),
266
272
(
2016
).
43.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
,
J. Chem. Phys.
137
(
22
),
22a545
(
2012
).
44.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
9
(
11
),
4959
4972
(
2013
).
45.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
10
(
2
),
789
804
(
2014
).
46.
O. V.
Prezhdo
,
Theor. Chem. Acc.
116
(
1-3
),
206
218
(
2006
).
47.
L. J.
Wang
,
D.
Trivedi
, and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
10
(
9
),
3598
3605
(
2014
).
48.
A. V.
Akimov
,
R.
Long
, and
O. V.
Prezhdo
,
J. Chem. Phys.
140
(
19
),
194107
(
2014
).
49.
S.
Pal
,
D. J.
Trivedi
,
A. V.
Akimov
,
B.
Aradi
,
T.
Frauenheim
, and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
12
(
4
),
1436
1448
(
2016
).
50.
P.
Nijjar
,
J.
Jankowska
, and
O. V.
Prezhdo
,
J. Chem. Phys.
150
(
20
),
204124
(
2019
).
51.
A. E.
Sifain
,
L. J.
Wang
,
S.
Tretiak
, and
O. V.
Prezhdo
,
J. Chem. Phys.
150
(
19
),
194104
(
2019
).
52.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
(
16
),
11169
11186
(
1996
).
53.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
54.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
55.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
56.
S. E.
Stefan Grimme
and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
1465
(
2011
).
57.
S. A.
Fischer
,
W. R.
Duncan
, and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
131
(
42
),
15483
15491
(
2009
).
58.
R.
Long
,
W. H.
Fang
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
7
(
16
),
3215
3222
(
2016
).
59.
R.
Long
and
O. V.
Prezhdo
,
ACS Nano
9
(
11
),
11143
11155
(
2015
).
60.
V. V.
Chaban
,
V. V.
Prezhdo
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
4
(
1
),
1
6
(
2013
).
61.
L. J.
Wang
,
R.
Long
, and
O. V.
Prezhdo
, in
Annual Review of Physical Chemistry
, edited by
M. A.
Johnson
and
T. J.
Martinez
(
Annual Reviews
,
2015
), Vol. 66, p.
549
.
62.
A. V.
Akimov
,
R.
Asahi
,
R.
Jinnouchi
, and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
137
(
35
),
11517
11525
(
2015
).
63.
R.
Long
,
N. J.
English
, and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
135
(
50
),
18892
18900
(
2013
).
64.
L. Q.
Li
,
R.
Long
, and
O. V.
Prezhdo
,
Chem. Mater.
29
(
6
),
2466
2473
(
2017
).
65.
R.
Long
,
D.
Casanova
,
W. H.
Fang
, and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
139
(
7
),
2619
2629
(
2017
).
66.
X.
Zhou
,
M. V.
Tokina
,
J. A.
Tomko
,
J. L.
Braun
,
P. E.
Hopkins
, and
O. V.
Prezhdo
,
J. Chem. Phys.
150
(
18
),
184701
(
2019
).
67.
J. L.
He
,
W. H.
Fang
,
R.
Long
, and
O. V.
Prezhdo
,
J. Am. Chem. Soc.
141
(
14
),
5798
5807
(
2019
).
68.
L. L.
Zhang
,
A. S.
Vasenko
,
J.
Zhao
, and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
10
(
5
),
1083
1091
(
2019
).
69.
J. L.
He
,
W. H.
Fang
,
R.
Long
, and
O. V.
Prezhdo
,
ACS Energy Lett.
3
(
9
),
2070
2076
(
2018
).
70.
W.
Li
,
L. J.
Zhou
,
O. V.
Prezhdo
, and
A. V.
Akimov
,
ACS Energy Lett.
3
(
9
),
2159
2166
(
2018
).
71.
W.
Li
,
J. F.
Tang
,
D.
Casanova
, and
O. V.
Prezhdo
,
ACS Energy Lett.
3
(
11
),
2713
2720
(
2018
).
72.
L. Q.
Li
,
R.
Long
, and
O. V.
Prezhdo
,
Nano Lett.
18
(
6
),
4008
4014
(
2018
).
73.
Z. S.
Zhang
,
W. H.
Fang
,
M. V.
Tokina
,
R.
Long
, and
O. V.
Prezhdo
,
Nano Lett.
18
(
4
),
2459
2466
(
2018
).
74.
Z. S.
Zhang
,
L. H.
Liu
,
W. H.
Fang
,
R.
Long
,
M. V.
Tokina
, and
O. V.
Prezhdo
,
Chem
4
(
5
),
1112
1127
(
2018
).
75.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
(
22
),
9901
9904
(
2000
).
76.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
(
22
),
9978
9985
(
2000
).
77.
M.
Luan
,
J.
Song
,
X.
Wei
,
F.
Chen
, and
J.
Liu
,
CrystEngComm
18
(
28
),
5257
5261
(
2016
).
78.
T.
Baikie
,
Y.
Fang
,
J. M.
Kadro
,
M.
Schreyer
,
F.
Wei
,
S. G.
Mhaisalkar
,
M.
Graetzel
, and
T. J.
White
,
J. Mater. Chem. A
1
(
18
),
5628
5641
(
2013
).
79.
E.
Mosconi
,
P.
Umari
, and
F.
De Angelis
,
Phys. Chem. Chem. Phys.
18
(
39
),
27158
27164
(
2016
).
80.
P.
Umari
,
E.
Mosconi
, and
F.
De Angelis
,
Sci. Rep.
4
,
4467
(
2014
).
81.
A.
Amat
,
E.
Mosconi
,
E.
Ronca
,
C.
Quarti
,
P.
Umari
,
M. K.
Nazeeruddin
,
M.
Grätzel
, and
F.
De Angelis
,
Nano Lett.
14
(
6
),
3608
3616
(
2014
).
82.
C.
Quarti
,
E.
Mosconi
,
J. M.
Ball
,
V.
D’Innocenzo
,
C.
Tao
,
S.
Pathak
,
H. J.
Snaith
,
A.
Petrozza
, and
F.
De Angelis
,
Energy Environ. Sci.
9
(
1
),
155
163
(
2016
).
83.
X.
Ke
,
J.
Yan
,
A.
Zhang
,
B.
Zhang
, and
Y.
Chen
,
Appl. Phys. Lett.
107
(
9
),
091904
(
2015
).
84.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press on Demand
,
1999
).
85.
A. V.
Akimov
and
O. V.
Prezhdo
,
J. Phys. Chem. Lett.
4
(
22
),
3857
3864
(
2013
).
86.
S. V.
Kilina
,
A. J.
Neukirch
,
B. F.
Habenicht
,
D. S.
Kilin
, and
O. V.
Prezhdo
,
Phys. Rev. Lett.
110
(
18
),
180404
(
2013
).
87.
C.
Quarti
,
G.
Grancini
,
E.
Mosconi
,
P.
Bruno
,
J. M.
Ball
,
M. M.
Lee
,
H. J.
Snaith
,
A.
Petrozza
, and
F.
De Angelis
,
J. Phys. Chem. Lett.
5
(
2
),
279
284
(
2013
).
88.
B.-W.
Park
,
S. M.
Jain
,
X.
Zhang
,
A.
Hagfeldt
,
G.
Boschloo
, and
T.
Edvinsson
,
ACS Nano
9
(
2
),
2088
2101
(
2015
).
89.
R.
Gottesman
,
L.
Gouda
,
B. S.
Kalanoor
,
E.
Haltzi
,
S.
Tirosh
,
E.
Rosh-Hodesh
,
Y.
Tischler
,
A.
Zaban
,
C.
Quarti
, and
E.
Mosconi
,
J. Phys. Chem. Lett.
6
(
12
),
2332
2338
(
2015
).
90.
B. F.
Habenicht
,
O. N.
Kalugin
, and
O. V.
Prezhdo
,
Nano Lett.
8
(
8
),
2510
2516
(
2008
).
91.
B. F.
Habenicht
,
H.
Karnisaka
,
K.
Yamashita
, and
O. V.
Prezhdo
,
Nano Lett.
7
(
11
),
3260
3265
(
2007
).
92.
H.
Kamisaka
,
S. V.
Kilina
,
K.
Yamashita
, and
O. V.
Prezhdo
,
J. Phys. Chem. C
112
(
21
),
7800
7808
(
2008
).
93.
Z. Y.
Guo
,
B. F.
Habenicht
,
W. Z.
Liang
, and
O. V.
Prezhdo
,
Phys. Rev. B
81
(
12
),
125415
(
2010
).
94.
J.
Liu
,
S. V.
Kilina
,
S.
Tretiak
, and
O. V.
Prezhdo
,
ACS Nano
9
(
9
),
9106
9116
(
2015
).
95.
G. J.
Hedley
,
C.
Quarti
,
J.
Harwell
,
O. V.
Prezhdo
,
D.
Beljonne
, and
I. D. W.
Samuel
,
Sci. Rep.
8
,
8115
(
2018
).
96.
M. E. A.
Madjet
,
A. V.
Akimov
,
F.
El-Mellouhi
,
G. R.
Berdiyorov
,
S.
Ashhab
,
N.
Tabet
, and
S.
Kais
,
Phys. Chem. Chem. Phys.
18
(
7
),
5219
5231
(
2016
).
97.
M. E.
Madlet
,
G. R.
Berdiyorov
,
F.
El-Mellouhi
,
F. H.
Alharbi
,
A. V.
Akimov
, and
S.
Kais
,
J. Phys. Chem. Lett.
8
(
18
),
4439
4445
(
2017
).
98.
N.-G.
Park
,
M.
Grätzel
,
T.
Miyasaka
,
K.
Zhu
, and
K.
Emery
,
Nat. Energy
1
(
11
),
16152
(
2016
).
99.
Y.
Jiang
,
E. J.
Juarez-Perez
,
Q.
Ge
,
S.
Wang
,
M. R.
Leyden
,
L. K.
Ono
,
S. R.
Raga
,
J.
Hu
, and
Y.
Qi
,
Mater. Horiz.
3
(
6
),
548
555
(
2016
).

Supplementary Material

You do not currently have access to this content.