In this work, we demonstrated the supercapacitor performance of pristine and composites of spinel NiCo2O4 with a multi-walled carbon nanotube (MWCNT) assembled in a two-electrode cell configuration. Spinel NiCo2O4 and NiCo2O4@MWCNT composites were synthesized via a facile hydrothermal method. The supercapacitive performance of as-synthesized NiCo2O4 and NiCo2O4@MWCNT fabricated on Ni-foam was studied in a 0.5M K2SO4 electrolyte using electrochemical measurement techniques. The symmetric cell configuration of NiCo2O4@MWCNT delivers high specific capacitance (374 F/g at 2 A/g) with high energy density and power density (95 Wh/kg and 3 964 W/kg, respectively) compared to that of pristine NiCo2O4 electrodes (137 F/g at 0.6 A/g). Furthermore, the energy storage performance of the asymmetric cells of NiCo2O4//MWCNT and NiCo2O4@MWCNT//MWCNT was studied to enhance cycling stability (retention of 74.85% over 3000 cycles). We have also theoretically studied the supercapacitance performance of pristine NiCo2O4 and NiCo2O4@SWCNT hybrid structures through its structural and electronic properties using density functional theory predictions. The higher specific capacitance of the NiCo2O4@SWCNT hybrid system with high power density and energy density is supported by the enhanced density of states near the Fermi level and increased quantum capacitance of the hybrid structure. We have theoretically computed the diffusion energy barrier of K+ ions of the K2SO4 electrolyte in the NiCo2O4 layer and compared it with the diffusion barrier for Na+ ions. The lesser diffusion energy barrier for K+ ions in the NiCo2O4 layer contributes toward higher energy storage capacity. Thus, owing to superior electrochemical performance of NiCo2O4 composites with MWCNTs, it can serve as a high-performance electrode material for supercapacitor applications.

1.
P.
Simon
and
Y.
Gogotsi
, “
Capacitive energy storage in nanostructured carbon–electrolyte systems
,”
Acc. Chem. Res.
46
,
1094
1103
(
2013
).
2.
B.
Dyatkin
 et al, “
Development of a green supercapacitor composed entirely of environmentally friendly materials
,”
ChemSusChem
6
,
2269
2280
(
2013
).
3.
C.
Yuan
,
X.
Zhang
,
L.
Su
,
B.
Gao
, and
L.
Shen
, “
Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors
,”
J. Mater. Chem.
19
,
5772
5777
(
2009
).
4.
M.
Huang
,
F.
Li
,
F.
Dong
,
Y. X.
Zhang
, and
L. L.
Zhang
, “
MnO2-based nanostructures for high-performance supercapacitors
,”
J. Mater. Chem. A
3
,
21380
21423
(
2015
).
5.
Q.
Jiang
,
N.
Kurra
,
M.
Alhabeb
,
Y.
Gogotsi
, and
H.
Alshareef
, “
All pseudocapacitive MXene-RuO2 asymmetric supercapacitors
,”
Adv. Energy Mater.
8
,
1703043
(
2018
).
6.
T.
Wang
,
S.
Chen
,
H.
Pang
,
H.
Xue
, and
Y.
Yu
, “
MoS2-based nanocomposites for electrochemical energy storage
,”
Adv. Sci.
4
,
1600289
(
2017
).
7.
X.
Xia
 et al, “
Freestanding Co3O4 nanowire array for high performance supercapacitors
,”
RSC Adv.
2
,
1835
1841
(
2012
).
8.
C.
Guan
 et al, “
Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability
,”
ACS Nano
9
,
5198
5207
(
2015
).
9.
M.
Harilal
 et al, “
Environment-modulated crystallization of Cu2O and CuO nanowires by electrospinning and their charge storage properties
,”
Langmuir
34
(
5
),
1873
1882
(
2018
).
10.
M.
Harilal
 et al, “
Continuous nanobelts of nickel oxide–cobalt oxide hybrid with improved capacitive charge storage properties
,”
Mater. Des.
122
,
376
384
(
2017
).
11.
M. V.
Reddy
,
G. V.
Subba Rao
, and
B. V. R.
Chowdari
, “
Metal oxides and oxysalts as anode materials for Li ion batteries
,”
Chem. Rev.
113
(
7
),
5364
5457
(
2013
).
12.
X.
Liu
 et al, “
Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials
,”
ACS Appl. Mater. Interfaces
5
,
8790
(
2013
).
13.
C.
Liu
,
W.
Jiang
,
F.
Hu
,
X.
Wu
, and
D.
Xue
, “
Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities
,”
Inorg. Chem. Front.
5
,
835
843
(
2018
).
14.
H.
Chen
 et al, “
Preparation of hierarchical spinel NiCo2O4 nanowires for high-performance supercapacitors
,”
Ind. Eng. Chem. Res.
57
,
2517
(
2018
).
15.
P.
Wu
 et al, “
Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes
,”
ACS Appl. Mater. Interfaces
8
,
23721
23728
(
2016
).
16.
P.
Wu
 et al, “
A low-cost, self-standing NiCo2O4@CNT/CNT multilayer electrode for flexible asymmetric solid-state supercapacitors
,”
Adv. Funct. Mater.
27
,
1702160
(
2017
).
17.
D.
Yan
 et al, “
NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor
,”
Chem. Eng. J.
334
,
864
(
2017
).
18.
V.
Aravindan
 et al, “
Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode
,”
J. Power Sources
196
(
20
),
8850
8854
(
2011
).
19.
Q.
Abbas
,
A. G.
Olabi
,
R.
Raza
, and
D.
Gibson
,
Ref. Module Mater. Sci. Mater. Eng.
(
2018
).
20.
B.
Das
 et al, “
High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors
,”
Adv. Powder Technol.
26
(
3
),
783
788
(
2015
).
21.
S. G.
Krishnan
 et al, “
Characterization of MgCo2O4 as an electrode for high performance supercapacitors
,”
Electrochim. Acta
161
,
312
321
(
2015
).
22.
Y.
Wu
 et al, “
Functional properties of electrospun NiO/RuO2 composite carbon nanofibers
,”
J. Alloys Compd.
517
,
69
74
(
2012
).
23.
G.
He
,
L.
Wang
,
H.
Chen
,
X.
Sun
, and
X.
Wang
, “
Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material
,”
Mater. Lett.
98
,
164
167
(
2013
).
24.
S. S.
Jayaseelan
 et al, “
Mesoporous 3D NiCo2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes
,”
Colloids Surf., A
538
,
451
459
(
2018
).
25.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
26.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
14269
(
1994
).
27.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
28.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
29.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for Brillouin-zone integrations
,”
Phys. Rev. B
13
,
5188
(
1976
).
30.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
1799
(
2006
).
31.
G. M.
Yang
,
H. Z.
Zhang
,
X. F.
Fan
, and
W. T.
Zheng
, “
Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material
,”
J. Phys. Chem. C
119
,
6464
6470
(
2015
).
32.
S.
Fan
 et al, “
Theoretical investigation of the intercalation chemistry of lithium/sodium ions in transition metal dichalcogenides
,”
J. Phys. Chem. C
121
,
13599
(
2017
).
33.
L.
Thi Mai Hoa
, “
Characterization of multi-walled carbon nanotubes functionalized by a mixture of HNO3/H2SO4
,”
Diamond Relat. Mater.
89
,
43
51
(
2018
).
34.
J.
Li
,
S.
Xiong
,
Y.
Liu
,
Z.
Ju
, and
Y.
Qian
, “
High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries
,”
ACS Appl. Mater. Interfaces
5
,
981
988
(
2013
).
35.
Q.
Wang
 et al, “
Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells
,”
J. Mater. Chem.
22
,
21647
21653
(
2012
).
36.
S.
Devaguptapu
 et al, “
Morphology control of carbon-free spinel NiCo2O4 catalysts for enhanced bifunctional oxygen reduction and evolution in alkaline media
,”
ACS Appl. Mater. Interfaces
9
,
44567
(
2017
).
37.
D.
Zhang
 et al, “
NiCo2O4 nanostructure materials: Morphology control and electrochemical energy storage
,”
Dalton Trans.
43
,
15887
15897
(
2014
).
38.
R.
Ramachandran
and
F.
Wang
, “
Electrochemical capacitor performance: Influence of aqueous electrolytes
,” in
Supercapacitors-Theoretical and Practical Solutions
(
IntechOpen
,
2017
).
39.
F.
Wang
,
Z.
Chang
,
M.
Li
, and
Y.
Wu
, “
Nanocarbon-based materials for asymmetric supercapacitors
,”
Nanocarbons Adv. Energy Storage
1
,
379
415
(
2015
).
40.
R.
Chen
,
L.
Liu
,
J.
Zhou
,
L.
Hou
, and
F.
Gao
, “
High-performance nickel-cobalt-boron material for an asymmetric supercapacitor with an ultrahigh energy density
,”
J. Power Sources
341
,
75
82
(
2017
).
41.
Y.
Zhao
,
L.
Hu
,
S.
Zhao
, and
L.
Wu
, “
Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance
,”
Adv. Funct. Mater.
26
,
4085
4093
(
2016
).
42.
H.
Jiang
 et al, “
Optimized NiCo2O4/rGO hybrid nanostructures on carbon fiber as an electrode for asymmetric supercapacitors
,”
RSC Adv.
8
,
37550
37556
(
2018
).
43.
Z.
Gao
,
N.
Song
,
Y.
Zhang
, and
X.
Li
, “
Cotton textile enabled, all-solid-state flexible supercapacitors
,”
RSC Adv.
5
,
15438
15447
(
2015
).

Supplementary Material

You do not currently have access to this content.