We model the enhancement of near band edge emission from ZnO nanorods using plasmonic metal nanoparticles and compare it with emission enhancement from ZnO with semiconducting quantum dots. Selected CdSe quantum dots with absorption energies close to those of Ag and Au nanoparticles are chosen to construct model systems with ZnO to comprehend the role of ZnO’s intrinsic defects and plasmonic excitation in realizing the spectrally selective luminescence enhancement. Excitation wavelength dependent photoluminescence spectra along with theoretical models quantifying the related transitions and plasmonic absorption reveal that a complex mechanism of charge transfer between the ZnO nanorods and metal nanoparticles or quantum dots is essential along with an optimal energy band alignment for realizing emission enhancement. The theoretical model presented also provides a direct method of quantifying the relative transition rate constants associated with various electronic transitions in ZnO and their change upon the incorporation of plasmonic nanoparticles. The results indicate that, while the presence of deep level defect states may facilitate the essential charge transfer process between ZnO and the plasmonic nanoparticles, their presence alone does not guarantee UV emission enhancement and strong plasmonic coupling between the two systems. The results offer clues to designing novel multicomponent systems with coupled plasmonic and charge transfer effects for applications in charge localization, energy harvesting, and luminescence enhancement, especially in electrically triggered nanophotonic applications.

1.
D. K.
Gramotnev
and
S. I.
Bozhevolnyi
,
Nat. Photonics
4
,
83
(
2010
).
2.
M. S.
Tame
 et al,
Nat. Phys.
9
,
329
(
2013
).
4.
V.
Kalathingal
,
P.
Dawson
, and
J.
Mitra
,
Sci. Rep.
7
,
3530
(
2017
).
5.
M. G.
Boyle
,
J.
Mitra
, and
P.
Dawson
,
Nanotechnology
20
,
335202
(
2009
).
6.
M. G.
Boyle
,
J.
Mitra
, and
P.
Dawson
,
Appl. Phys. Lett.
94
,
233118
(
2009
).
7.
A. I.
Henry
 et al,
Faraday Discuss.
205
,
9
(
2017
).
8.
C.
Zhang
 et al,
Sci. Rep.
6
,
25243
(
2016
).
9.
C.
Ciracì
 et al,
J. Opt. Soc. Am. B
31
,
2601
(
2014
).
10.
K. F.
MacDonald
 et al,
Nat. Photonics
3
,
55
(
2009
).
11.
R.
Zia
 et al,
Mater. Today
9
,
20
(
2006
).
12.
M.
Kauranen
and
A. V.
Zayats
,
Nat. Photonics
6
,
737
(
2012
).
13.
S.
Palomba
,
M.
Danckwerts
, and
L.
Novotny
,
J. Opt. A: Pure Appl. Opt.
11
,
114030
(
2009
).
14.
M. H.
Huang
 et al,
Science
292
,
1897
(
2001
).
15.
J. H.
Lim
 et al,
Adv. Mater.
18
,
2720
(
2006
).
16.
S.
Choi
 et al,
ACS Appl. Mater. Interfaces
7
,
5619
(
2015
).
18.
G.
Harikrishnan
 et al,
Nanoscale Adv.
1
,
2435
(
2019
).
19.
S.
Li
 et al,
RSC Adv.
6
,
58566
(
2016
).
20.
S. N.
Das
 et al,
J. Phys. Chem. C
114
,
1689
(
2010
).
21.
R. K.
Joshi
 et al,
J. Phys. Chem. C
113
,
16199
(
2009
).
22.
P.
Cheng
 et al,
Appl. Phys. Lett.
92
,
041119
(
2008
).
23.
K.
Bandopadhyay
,
K. N.
Prajapati
, and
J.
Mitra
,
Nanotechnology
29
,
105701
(
2018
).
24.
F. L.
Boughey
 et al,
Nanotechnology
27
,
28LT02
(
2016
).
25.
Ü.
Özgür
 et al,
J. Appl. Phys.
98
,
041301
(
2005
).
26.
T.
Chen
 et al,
Nanotechnology
19
,
435711
(
2008
).
27.
L.
Su
 et al,
J. Appl. Phys.
116
,
063108
(
2014
).
28.
K. W.
Liu
 et al,
Appl. Phys. Lett.
94
,
151102
(
2009
).
29.
Z.
Yi
 et al,
Plasmonics
10
,
1373
(
2015
).
30.
K.
Liu
 et al,
J. Phys. Chem. C
114
,
19835
(
2010
).
31.
L.
Tarpani
and
L.
Latterini
,
J. Lumin.
185
,
192
(
2017
).
32.
S. T.
Kochuveedu
and
D. H.
Kim
,
Nanoscale
6
,
4966
(
2014
).
33.
R.
Thomas
 et al,
ACS Nano
12
,
402
(
2018
).
34.
J. R.
Lakowicz
,
Anal. Biochem.
337
,
171
(
2005
).
35.
K.
Aslan
,
J. R.
Lakowicz
, and
C. D.
Geddes
,
Anal. Bioanal. Chem.
382
,
926
(
2005
).
36.
V. N.
Pustovit
and
T. V.
Shahbazyan
,
Phys. Rev. B
82
,
075429
(
2010
).
37.
K.
Zidek
 et al,
Sci. Rep.
4
,
7244
(
2014
).
38.
T.
Rakshit
 et al,
ACS Appl. Mater. Interfaces
4
,
6085
(
2012
).
39.
C.
Eley
 et al,
Angew. Chem., Int. Ed.
53
,
7838
(
2014
).
40.
L. E.
Greene
 et al,
Nano Lett.
5
,
1231
(
2005
).
41.
K.
Bandopadhyay
and
J.
Mitra
,
RSC Adv.
5
,
23540
(
2015
).
42.
M. B.
Mohamed
 et al,
J. Phys. Chem. B
109
,
10533
(
2005
).
43.
K. B.
Subila
 et al,
J. Phys. Chem. Lett.
4
,
2774
(
2013
).
44.
S.
Cho
,
S.-H.
Jung
, and
K.-H.
Lee
,
J. Phys. Chem. C
112
,
12769
(
2008
).
45.
W. W.
Yu
 et al,
Chem. Mater.
15
,
2854
(
2003
).
46.
S.
Vempati
 et al,
Appl. Phys. Lett.
100
,
162104
(
2012
).
47.
L. J.
Brillson
and
Y.
Lu
,
J. Appl. Phys.
109
,
121301
(
2011
).
48.
M.-K.
Lee
 et al,
J. Phys. Chem. C
112
,
10079
(
2008
).
49.
S.
Fiedler
 et al, arXiv:1910.06125 (
2019
).
50.
N.
Vigneshwaran
 et al,
Nanotechnology
17
,
5087
(
2006
).
51.
A.
Makhal
 et al,
Nanotechnology
21
,
265703
(
2010
).
52.
M.
Hauser
 et al,
Appl. Phys. Lett.
92
,
211105
(
2008
).
53.
K.
Bandopadhyay
and
J.
Mitra
,
Sci. Rep.
6
,
28468
(
2016
).
54.
S. G.
Zhang
 et al,
Appl. Phys. Lett.
99
,
181116
(
2011
).

Supplementary Material

You do not currently have access to this content.