Tin dioxide (SnO2) has various applications due to its unique surface and electronic properties. These properties are strongly influenced by Sn oxidation states and associated defect chemistries. Recently, the oxidation of volatile organic compounds (VOCs) into less harmful molecules has been demonstrated using SnO2 catalysts. A common VOC, 2-propanol (isopropyl alcohol, IPA), has been used as a model compound to better understand SnO2 reaction kinetics. We have used ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) to characterize the surface chemistry of IPA and O2 mixtures on stoichiometric, unreconstructed SnO2(110)-(1 × 1) surfaces. AP-XPS experiments were performed for IPA pressures ≤3 mbar, various IPA/O2 ratios, and several reaction temperatures. These measurements allowed us to determine the chemical states of adsorbed species on SnO2(110)-(1 × 1) under numerous experimental conditions. We found that both the IPA/O2 ratio and sample temperature strongly influence reaction chemistries. AP-XPS valence-band spectra indicate that the surface was partially reduced from Sn4+ to Sn2+ during reactions with IPA. In situ mass spectrometry and gas-phase AP-XPS results indicate that the main reaction product was acetone under these conditions. For O2 and IPA mixtures, the reaction kinetics substantially increased and the surface remained solely Sn4+. We believe that O2 replenished surface oxygen vacancies and that SnO2 bridging and in-plane oxygen are likely the active oxygen species. Moreover, addition of O2 to the reaction results in a reduction in formation of acetone and an increase in formation of CO2 and H2O. Based on these studies, we have developed a reaction model that describes the catalytic oxidation of IPA on stoichiometric SnO2(110)-(1 × 1) surfaces.

1.
M.
Batzill
and
U.
Diebold
,
Prog. Surf. Sci.
79
,
47
(
2005
).
2.
J.
Leclercq
,
F.
Giraud
,
D.
Bianchi
,
K.
Fiaty
, and
F.
Gaillard
,
Catal. Commun.
46
,
192
(
2014
).
3.
Y.
Sun
,
F.
Lei
,
S.
Gao
,
B.
Pan
,
J.
Zhou
, and
Y.
Xie
,
Angew. Chem., Int. Ed.
52
,
10569
(
2013
).
4.
V. E.
Henrich
and
P. A.
Cox
,
The Surface Science of Metal Oxides
(
Cambridge University Press
,
Cambridge, UK
,
1994
), pp.
1
3
;
149
157
.
5.
Y. F.
Sun
,
S. B.
Liu
,
F. L.
Meng
,
J. Y.
Liu
,
Z.
Jin
,
L. T.
Kong
, and
J. H.
Liu
,
Sensors
12
,
2610
(
2012
).
6.
J.
Oviedo
and
M. J.
Gillan
,
Surf. Sci.
467
,
35
(
2000
).
7.
H.-J.
Freund
,
G.
Meijer
,
M.
Schefler
,
R.
Schlögl
, and
M.
Wolf
,
Angew. Chem., Int. Ed.
50
,
10064
(
2011
).
8.
M. J.
Fuller
and
M. E.
Warwick
,
J. Catal.
29
,
441
(
1973
).
9.
Y.
Inomata
,
K.
Albrecht
, and
K.
Yamamoto
,
ACS Catal.
8
,
451
(
2018
).
10.
X.
Wang
,
L.
Xiao
,
H.
Peng
,
W.
Liu
, and
X.
Xu
,
J. Mater. Chem. A
2
,
5616
(
2014
).
11.
P. A.
Christensen
,
Z. T. A. W.
Mashhadani
, and
A. H. B.
Md Ali
,
Phys. Chem. Chem. Phys.
20
,
9053
(
2018
).
12.
D.
Kulkarni
and
I. E.
Wachs
,
Appl. Catal., A
237
,
121
(
2002
).
13.
D.
Haffad
,
A.
Chambellan
, and
J. C.
Lavalley
,
J. Mol. Catal. A: Chem.
168
,
153
(
2001
).
14.
D. F.
Cox
,
T. B.
Fryberger
, and
S.
Semancik
,
Phys. Rev. B
38
(
3
),
2072
(
1988
).
15.
S.
Das
and
V.
Jayaraman
,
Prog. Mater. Sci.
66
,
112
(
2014
).
16.
M.
Batzill
,
K.
Katsiev
, and
U.
Diebold
,
Surf. Sci.
529
(
3
),
295
(
2003
).
17.
P.
Ágoston
and
K.
Albe
,
Surf. Sci.
605
,
714
(
2011
).
18.
C. L.
Pang
,
S. A.
Haycock
,
H.
Raza
,
P. J.
Møller
, and
G.
Thornton
,
Phys. Rev. B
62
,
R7775
(
2000
).
19.
C.
Arble
,
M.
Jia
, and
J. T.
Newberg
,
Surf. Sci. Rep.
73
,
37
(
2018
).
20.
See nnci.oregonstate.edu/apscl for the Ambient Pressure Surface Characterization Laboratory.
21.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-Ray Photoelectron Spectroscopy
(
Perkin-Elmer Corporation: Physical Electronics Division
,
Eden Prairie, MN
,
1992
).
22.
Y.
Zhang
,
A.
Savara
, and
D. R.
Mullins
,
J. Phys. Chem. C
121
,
23436
(
2017
).
23.
A.
Jürgensen
,
N.
Heutz
,
H.
Raschke
,
K.
Merz
, and
R.
Hergenröder
,
Anal. Chem.
87
,
7848
(
2015
).
24.
C. S.
Fadley
, in
Electron Spectroscopy: Theory, Techniques and Applications
, edited by
C. R.
Brundle
and
A. D.
Baker
(
Academic Press
,
London, England, UK
,
1978
), pp.
23
75
.
25.
J. J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
,
1
(
1985
).
26.
P. J.
Cumpson
and
M. P.
Seah
,
Surf. Interface Anal.
25
,
430
(
1997
).
27.
O. A.
Chuvenkova
,
E. P.
Domashevskaya
,
S. V.
Ryabtsev
,
Y. A.
Yurakov
,
A. E.
Popov
,
D. A.
Koyuda
,
D. N.
Nesterov
,
D. E.
Spirin
,
R. Y.
Ovsyannikov
, and
S. Y.
Turishchev
,
Phys. Solid State
57
,
153
(
2015
).
28.
É. P.
Domashevskaya
,
S. V.
Ryabtsev
,
S. Y.
Turishchev
,
V. M.
Kashkarov
,
Y. A.
Yurakov
,
O. A.
Chuvenkova
, and
A. V.
Shchukarev
,
J. Struct. Chem.
49
,
80
(
2008
).
29.
K.
Tabata
,
T.
Kawabe
,
Y.
Yamaguchi
, and
Y.
Nagasawa
,
Catal. Surv. Asia
7
,
251
(
2003
).
30.
K.
Shimanoe
,
K.
Ikari
,
Y.
Shimizu
, and
N.
Yamazoe
,
Sens. Actuators, B
118
,
90
(
2006
).
31.
D. E.
Starr
,
D.
Pan
,
J. T.
Newberg
,
M.
Ammann
,
E. G.
Wang
,
A.
Michaelides
, and
H.
Bluhm
,
Phys. Chem. Chem. Phys.
13
,
19988
(
2011
).
32.
Y. K.
Kim
,
B. D.
Kay
,
J. M.
White
, and
Z.
Dohnálek
,
Surf. Sci.
602
,
511
(
2008
).
33.
D.
Brinkley
and
T.
Engel
,
J. Phys. Chem. B
102
,
7596
(
1998
).
34.
NIST Mass Spectrometry Data Center, Collection (C) 2014 copyright by the U.S. Secretary of Commerce, https://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Mask=200#Notes; accessed November 13, 2019.
35.
V. A.
Gercher
,
D. F.
Cox
, and
J.-M.
Themlin
,
Surf. Sci.
306
,
279
(
1994
).
36.
V. A.
Gercher
and
D. F.
Cox
,
Surf. Sci.
312
,
106
(
1994
).
37.
38.
K.
Ramesh
,
L.
Chen
,
F.
Chen
,
Y.
Liu
,
Z.
Wang
, and
Y. F.
Han
,
Catal. Today
131
,
477
(
2008
).
39.
E.
Farfan-Arribas
and
R. J.
Madix
,
J. Phys. Chem. B
106
,
10680
(
2002
).
40.
B. H.
Bui
,
R. S.
Zhu
, and
M. C.
Lin
,
J. Chem. Phys.
117
,
11188
(
2002
).
41.
P. G.
Choi
,
N.
Izu
,
N.
Shirahata
, and
Y.
Masuda
,
Sens. Actuators, B
296
,
126655
(
2019
).

Supplementary Material

You do not currently have access to this content.