A graphene nanobubble consists of a graphene sheet, an atomically flat substrate, and a substance enclosed between them. Unlike conventional confinement with rigid walls and a fixed volume, the graphene nanobubble has one stretchable wall, which is the graphene sheet, and its volume can be adjusted by changing the shape. In this study, we developed a model of a graphene nanobubble based on classical density functional theory and the elastic theory of membranes. The proposed model takes into account the inhomogeneity of the enclosed substance, the nonrigidity of the wall, and the alternating volume. As an example application, we utilize the developed model to investigate fluid argon inside graphene nanobubbles at room temperature. We observed a constant height-to-radius ratio over the whole range of radii considered, which is in agreement with the results from experiments and molecular dynamics simulations. The developed model provides a theoretical tool to study both the inner structure of the confined substance and the shape of the graphene nanobubble. The model can be easily extended to other types of nonrigid confinement.

1.
G.
Algara-Siller
,
O.
Lehtinen
,
F.
Wang
,
R.
Nair
,
U.
Kaiser
,
H.
Wu
,
A.
Geim
, and
I.
Grigorieva
, “
Square ice in graphene nanocapillaries
,”
Nature
519
,
443
(
2015
).
2.
K.
Koga
,
G.
Gao
,
H.
Tanaka
, and
X. C.
Zeng
, “
Formation of ordered ice nanotubes inside carbon nanotubes
,”
Nature
412
,
802
(
2001
).
3.
Y. D.
Fomin
, “
Molecular dynamics simulation of benzene in graphite and amorphous carbon slit pores
,”
J. Comput. Chem.
34
,
2615
2624
(
2013
).
4.
Y. D.
Fomin
,
E. N.
Tsiok
, and
V. N.
Ryzhov
, “
The behavior of benzene confined in a single wall carbon nanotube
,”
J. Comput. Chem.
36
,
901
906
(
2015
).
5.
Y. D.
Fomin
,
V.
Ryzhov
, and
E.
Tsiok
, “
The behavior of cyclohexane confined in slit carbon nanopore
,”
J. Chem. Phys.
143
,
184702
(
2015
).
6.
C. H. Y. X.
Lim
,
A.
Sorkin
,
Q.
Bao
,
A.
Li
,
K.
Zhang
,
M.
Nesladek
, and
K. P.
Loh
, “
A hydrothermal anvil made of graphene nanobubbles on diamond
,”
Nat. Commun.
4
,
1556
(
2013
).
7.
A.
Vom Felde
,
J.
Fink
,
T.
Müller-Heinzerling
,
J.
Pflüger
,
B.
Scheerer
,
G.
Linker
, and
D.
Kaletta
, “
Pressure of neon, argon, and xenon bubbles in aluminum
,”
Phys. Rev. Lett.
53
,
922
(
1984
).
8.
J.
Klein
and
E.
Kumacheva
, “
Confinement-induced phase transitions in simple liquids
,”
Science
269
,
816
819
(
1995
).
9.
G. Y.
Gor
,
P.
Huber
, and
J.
Weissmüller
, “
Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress
,”
Phys. Rev. Mater.
2
,
086002
(
2018
).
10.
Y.
Long
,
J. C.
Palmer
,
B.
Coasne
,
M.
Śliwinska-Bartkowiak
, and
K. E.
Gubbins
, “
Pressure enhancement in carbon nanopores: A major confinement effect
,”
Phys. Chem. Chem. Phys.
13
,
17163
17170
(
2011
).
11.
P. I.
Ravikovitch
and
A. V.
Neimark
, “
Density functional theory model of adsorption deformation
,”
Langmuir
22
,
10864
10868
(
2006
).
12.
F.-X.
Coudert
,
A. H.
Fuchs
, and
A. V.
Neimark
, “
Adsorption deformation of microporous composites
,”
Dalton Trans.
45
,
4136
4140
(
2016
).
13.
N.
Levy
,
S.
Burke
,
K.
Meaker
,
M.
Panlasigui
,
A.
Zettl
,
F.
Guinea
,
A. C.
Neto
, and
M.
Crommie
, “
Strain-induced pseudo–magnetic fields greater than 300 tesla in graphene nanobubbles
,”
Science
329
,
544
547
(
2010
).
14.
Z.
Qi
,
A. L.
Kitt
,
H. S.
Park
,
V. M.
Pereira
,
D. K.
Campbell
, and
A. C.
Neto
, “
Pseudomagnetic fields in graphene nanobubbles of constrained geometry: A molecular dynamics study
,”
Phys. Rev. B
90
,
125419
(
2014
).
15.
R.
Mu
,
Q.
Fu
,
L.
Jin
,
L.
Yu
,
G.
Fang
,
D.
Tan
, and
X.
Bao
, “
Visualizing chemical reactions confined under graphene
,”
Angew. Chem., Int. Ed.
51
,
4856
4859
(
2012
).
16.
A.
Tyurnina
,
D.
Bandurin
,
E.
Khestanova
,
V. G.
Kravets
,
M.
Koperski
,
F.
Guinea
,
A. N.
Grigorenko
,
A. K.
Geim
, and
I. V.
Grigorieva
, “
Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength
,”
ACS Photonics
6
,
516
(
2019
).
17.
E.
Khestanova
,
F.
Guinea
,
L.
Fumagalli
,
A.
Geim
, and
I.
Grigorieva
, “
Universal shape and pressure inside bubbles appearing in van der Waals heterostructures
,”
Nat. Commun.
7
,
12587
(
2016
).
18.
E.
Khestanova
, “
Van der Waals heterostructures: Fabrication, mechanical and electronic properties
,” Ph.D. thesis,
The University of Manchester
,
United Kingdom
,
2018
.
19.
E.
Iakovlev
,
P.
Zhilyaev
, and
I. S.
Akhatov
, “
Obtaining the state of matter inside graphene nanobubble from its shape
,”
J. Phys.: Conf. Ser.
1147
,
012006
(
2019
).
20.
G.
Zamborlini
,
M.
Imam
,
L. L.
Patera
,
T. O.
Mentes
,
N.
Stojić
,
C.
Africh
,
A.
Sala
,
N.
Binggeli
,
G.
Comelli
, and
A.
Locatelli
, “
Nanobubbles at GPa pressure under graphene
,”
Nano Lett.
15
,
6162
6169
(
2015
).
21.
R.
Larciprete
,
S.
Colonna
,
F.
Ronci
,
R.
Flammini
,
P.
Lacovig
,
N.
Apostol
,
A.
Politano
,
P.
Feulner
,
D.
Menzel
, and
S.
Lizzit
, “
Self-assembly of graphene nanoblisters sealed to a bare metal surface
,”
Nano Lett.
16
,
1808
1817
(
2016
).
22.
D. A.
Sanchez
,
Z.
Dai
,
P.
Wang
,
A.
Cantu-Chavez
,
C. J.
Brennan
,
R.
Huang
, and
N.
Lu
, “
Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals
,”
Proc. Natl. Acad. Sci. USA
115
,
7884
7889
(
2018
).
23.
H.
Ghorbanfekr-Kalashami
,
K.
Vasu
,
R.
Nair
,
F. M.
Peeters
, and
M.
Neek-Amal
, “
Dependence of the shape of graphene nanobubbles on trapped substance
,”
Nat. Commun.
8
,
15844
(
2017
).
24.
E.
Iakovlev
,
P.
Zhilyaev
, and
I.
Akhatov
, “
Atomistic study of the solid state inside graphene nanobubbles
,”
Sci. Rep.
7
,
17906
(
2017
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory and Elasticity
, Course of Theoretical Physics Vol. 7 (
Pergamon Press
,
1959
).
26.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
, “
Fundamental measure theory for hard-sphere mixtures revisited: The white bear version
,”
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
27.
D.
Grégoire
,
C.
Malheiro
, and
C.
Miqueu
, “
Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory
,”
Continuum Mech. Thermodyn.
30
,
347
363
(
2018
).
28.
P.
Zhilyaev
,
E.
Iakovlev
, and
I.
Akhatov
, “
Liquid–gas phase transition of Ar inside graphene nanobubbles on the graphite substrate
,”
Nanotechnology
30
,
215701
(
2019
).
29.
G.
Kocher
and
N.
Provatas
, “
New density functional approach for solid-liquid-vapor transitions in pure materials
,”
Phys. Rev. Lett.
114
,
155501
(
2015
).

Supplementary Material

You do not currently have access to this content.