The interfaces between metal oxides and liquids represent the next frontier in the study of oxide chemistry. In this work, (110)-oriented rutile TiO2 wafers were annealed in oxidative atmospheres and immersed in aqueous KCl solutions of pH 3, 6, and 11. Topographic imaging of the TiO2 wafers was carried out in solution via atomic force microscopy using the frequency-modulation force detection technique. Crystalline terraces of 100 nm in width were observed with no sign of solution-induced etching. In a pH-6 solution, ridges parallel to the [001] axis with trenches in between were observed and assigned to the rows of oxygen anions protruding from the surface plane to the solution. Individual anions were further resolved in the ridges, revealing atomic-size protrusions located on the (1 × 1) meshes of the (110) truncation. The topography in an acidic solution (pH 3) was similar to that observed in a neutral solution and could be interpreted as protruding oxygen anions covered partially by protons. In a basic solution with pH 11, qualitatively different features were observed; atomic-size swellings formed a p(2 × 1) superstructure covering the surface, which was hypothesized to be Ti–OH on five-fold coordinated Ti cations in the surface plane. These results show the feasibility of advanced atomic force microscopy for probing metal-oxide surfaces submerged in liquids.

1.
U.
Diebold
, “
The surface science of titanium dioxide
,”
Surf. Sci. Rep.
48
,
53
230
(
2003
).
2.
U.
Diebold
, “
Perspective: A controversial benchmark system for water-oxide interfaces: H2O/TiO2(110)
,”
J. Chem. Phys.
147
,
040901
(
2017
).
3.
F. J.
Giessibl
, “
Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy
,”
Science
267
,
68
71
(
1995
).
4.
S.
Kitamura
and
M.
Iwatsuki
, “
Observation of 7×7 reconstructed structure on the silicon (111) surface using ultrahigh vacuum noncontact atomic force microscopy
,”
Jpn. J. Appl. Phys., Part 2
34
,
L145
L148
(
1995
).
5.
Y.
Sugawara
,
M.
Ohta
,
H.
Ueyama
, and
S.
Morita
, “
Defect motion on an InP (110) surface observed with noncontact atomic force microscopy
,”
Science
270
,
1646
1648
(
1995
).
6.
A.
Sasahara
,
S.
Kitamura
,
H.
Uetsuka
, and
H.
Onishi
, “
Oxygen-atom vacancies imaged by a noncontact atomic force microscope operated in an atmospheric pressure of N2 gas
,”
J. Phys. Chem. B
108
,
15735
15737
(
2004
).
7.
T.
Fukuma
,
M.
Kimura
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
, “
Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy
,”
Rev. Sci. Instrum.
76
,
053704
(
2005
).
8.
T.
Fukuma
,
K.
Kobayashi
,
K.
Matsushige
, and
H.
Yamada
, “
True molecular resolution in liquid by frequency-modulation atomic force microscopy
,”
Appl. Phys. Lett.
86
,
193108
(
2005
).
9.
S.-H.
Loh
and
S.
Jarvis
, “
Visualization of ion distribution at the mica–electrolyte interface
,”
Langmuir
26
,
9176
9178
(
2010
).
10.
T.
Hiasa
,
K.
Kimura
,
H.
Onishi
,
M.
Ohta
,
K.
Watanabe
,
R.
Kokawa
,
N.
Oyabu
,
K.
Kobayashi
, and
H.
Yamada
, “
Aqueous solution structure over α-Al2O3(011¯2) probed by frequency-modulation atomic force microscopy
,”
J. Phys. Chem. C
114
,
21423
21426
(
2010
).
11.
Y.
Araki
,
H.
Satoh
,
M.
Okumura
, and
H.
Onishi
, “
Localization of cesium on montmorillonite surface investigated by frequency modulation atomic force microscopy
,”
Surf. Sci.
665
,
32
36
(
2017
).
12.
K.
Umeda
,
L.
Zivanovic
,
K.
Kobayashi
,
J.
Ritala
,
H.
Kominami
,
P.
Spijker
,
A. S.
Foster
, and
H.
Yamada
, “
Atomic-resolution three-dimensional hydration structures on a heterogeneously charged surface
,”
Nat. Commun.
8
,
2111
(
2017
).
13.
K.
Umeda
,
K.
Kobayashi
,
T.
Minato
, and
H.
Yamada
, “
Atomic-scale 3D local hydration structures influenced by water-restricting dimensions
,”
Langmuir
34
,
9114
9121
(
2018
).
14.
S.
Kawasaki
,
E.
Holmström
,
R.
Takahashi
,
P.
Spijker
,
A. S.
Foster
,
H.
Onishi
, and
M.
Lippmaa
, “
Intrinsic superhydrophilicity of titania-terminated surfaces
,”
J. Phys. Chem. C
121
,
2268
2275
(
2017
).
15.
H.
Asakawa
,
E.
Holmström
,
A. S.
Foster
,
S.
Kamimura
,
T.
Ohno
, and
T.
Fukuma
, “
Direct imaging of atomic-scale surface structures of brookite TiO2 nanoparticles by frequency modulation atomic force microscopy in liquid
,”
J. Phys. Chem. C
122
,
24085
24093
(
2018
).
16.
A.
Sasahara
and
M.
Tomitori
, “
Frequency modulation atomic force microscope observation of TiO2(110) surfaces in water
,”
J. Vac. Sci. Technol., B
28
,
C4C5
C4C10
(
2010
).
17.
K.
Fukui
,
H.
Onishi
, and
Y.
Iwasawa
, “
Atom-resolved image of the TiO2 (110) surface by noncontact atomic force microscopy
,”
Phys. Rev. Lett.
79
,
4202
4205
(
1997
).
18.
R.
Bechstein
,
C.
González
,
J.
Schütte
,
P.
Jelínek
,
R.
Pérez
, and
A.
Kühnle
, “
‘All-inclusive’ imaging of the rutile TiO2(110) surface using NC-AFM
,”
Nanotechnology
20
,
505703
(
2009
).
19.
J. P.
Fitts
,
M. L.
Machesky
,
D. J.
Wesolowski
,
X.
Shang
,
J. D.
Kubicki
,
G. W.
Flynn
,
T. F.
Heinz
, and
K. B.
Eisenthal
, “
Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2(110) interface
,”
Chem. Phys. Lett.
411
,
399
403
(
2005
).
20.
J.
Cheng
and
M.
Sprik
, “
Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics
,”
J. Chem. Theory Comput.
6
,
880
889
(
2010
).
21.
J. W.
Bullard
and
M. J.
Cima
, “
Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces
,”
Langmuir
22
,
10264
10271
(
2006
).
22.
A.
Sasahara
,
T.
Murakami
, and
M.
Tomitori
, “
Nanoscale characterization of TiO2(110) annealed in air
,”
Appl. Surf. Sci.
428
,
1000
1005
(
2018
).
23.
I.
Horcas
,
R.
Fernández
,
J. M.
Gomez-Rodriguez
, and
A. M.
Baro
, “
WSXM: A software for scanning probe microscopy and a tool for nanotechnology
,”
Rev. Sci. Instrum.
78
,
013705
(
2007
).
24.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
675
(
2012
).
25.
H.
Uetsuka
,
A.
Sasahara
, and
H.
Onishi
, “
Topography of the rutile TiO2(110) surface exposed to water and organic solvents
,”
Langmuir
20
,
4782
4783
(
2004
).
26.
M.
Li
,
W.
Hebenstreit
,
U.
Diebold
,
A. M.
Tyryshkin
,
M. K.
Bowman
,
G. G.
Dunham
, and
M. A.
Henderson
, “
The influence of the bulk reduction state on the surface structure and morphology of rutile TiO2(110) single crystals
,”
J. Phys. Chem. B
104
,
4944
4950
(
2000
).
27.
J. W.
Schultze
and
M. M.
Lohrengel
, “
Stability, reactivity and breakdown of passive films. Problems of recent and future research
,”
Electrochim. Acta
45
,
2499
2513
(
2000
).
28.
U.
Diebold
,
W.
Hebenstreit
,
G.
Leonardelli
,
M.
Schmid
, and
P.
Varga
, “
High transient mobility of chlorine on TiO2(110): Evidence for “cannon-ball” trajectories of hot adsorbates
,”
Phys. Rev. Lett.
81
,
405
408
(
1998
).
29.
H.
Onishi
,
K.
Fukui
, and
Y.
Iwasawa
, “
Space-correlation analysis of formate ions adsorbed on TiO2(110)
,”
Jpn. J. Appl. Phys., Part 1
38
,
3830
3832
(
1999
).
30.
M.
Ikeda
,
N.
Koide
,
L.
Han
,
C.
Pang
,
A.
Sasahara
, and
H.
Onishi
, “
Lateral distribution of N3 dye molecules on TiO2(110) surface
,”
J. Photochem. Photobiol., A
202
,
185
190
(
2009
).
31.

F(x, y) should be symmetric with respect to the origin by definition. The authors practically restricted the summation range of (X, Y) not to place (X + x, Y + y) out of the raw image. The autocorrelation summed under the restriction slightly deviated from the inversion symmetry.

32.
Z.
Zhang
,
P.
Fenter
,
N. C.
Sturchio
,
M. J.
Bedzyk
,
M. L.
Machesky
, and
D. J.
Wesolowski
, “
Structure of rutile TiO2(110) in water and 1 molal Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements
,”
Surf. Sci.
601
,
1129
1143
(
2007
).
33.
G.
Serrano
,
B.
Bonanni
,
M.
Di Giovannantonio
,
T.
Kosmala
,
M.
Schmid
,
U.
Diebold
,
A.
Di Carlo
,
J.
Cheng
,
J.
VandeVondele
,
K.
Wandelt
, and
C.
Goletti
, “
Molecular ordering at the interface between liquid water and rutile TiO2(110)
,”
Adv. Mater. Interfaces
2
,
1500246
(
2015
).
34.
H.
Hussain
,
G.
Tocci
,
T.
Woolcot
,
X.
Torrelles
,
C. L.
Pang
,
D. S.
Humphrey
,
C. M.
Yim
,
D. C.
Grinter
,
G.
Cabailh
,
O.
Bikondoa
,
R.
Lindsay
,
J.
Zegenhagen
,
A.
Michaelides
, and
G.
Thornton
, “
Structure of a model TiO2 photocatalytic interface
,”
Nat. Mater.
16
,
461
466
(
2017
).
35.
A.
Song
,
E. S.
Skibinski
,
W. J. I.
DeBenedetti
,
A. G.
Ortoll-Bloch
, and
M. A.
Hines
, “
Nanoscale solvation leads to spontaneous formation of a bicarbonate monolayer on rutile (110) under ambient conditions: Implications for CO2 photoreduction
,”
J. Phys. Chem. C
120
,
9326
9333
(
2016
).
36.
A.
Sasahara
and
M.
Tomitori
, “
An atomic-scale study of TiO2(110) surfaces exposed to humid environments
,”
J. Phys. Chem. C
120
,
21427
21435
(
2016
).
37.
J.
Balajka
,
M. A.
Hines
,
W. J. I.
DeBenedetti
,
M.
Komora
,
J.
Pavelec
,
M.
Schmid
, and
U.
Diebold
, “
High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution
,”
Science
361
,
786
789
(
2018
).

Supplementary Material

You do not currently have access to this content.