Nanoscale plasmonic field enhancement at sub-wavelength metallic particles is crucial for surface sensitive spectroscopy, ultrafast microscopy, and nanoscale energy transduction. Here, we demonstrate control of the spatial distribution of localized surface plasmon modes at sub-optical-wavelength crystalline silver (Ag) micropyramids grown on a Si(001) surface. We employ multiphoton photoemission electron microscopy (mP-PEEM) to image how the plasmonic field distributions vary with the photon energy, light polarization, and phase in coherent two-pulse excitation. For photon energy > 2.0 eV, the mP-PEEM images show single photoemission locus, which splits into a dipolar pattern that straddles the Ag crystal at a lower energy. We attribute the variation to the migration of plasmon resonances from the Ag/vacuum to the Ag/Si interfaces by choice of the photon energy. Furthermore, the dipolar response of the Ag/Si interface follows the polarization state of light: for linearly polarized excitations, the plasmon dipole follows the in-plane electric field vector, while for circularly polarized excitations, it tilts in the direction of the handedness due to the conversion of spin angular momentum of light into orbital angular momentum of the plasmons excited in the sample. Finally, we show the coherent control of the spatial plasmon distribution by exciting the sample with two identical circularly polarized light pulses with delay defined with attosecond precision. The near field distribution wobbles at the pyramid base as the pump–probe delay is advanced due to interferences among the contributing fields. We illustrate how the frequency, polarization, and pulse structure can be used to design and control plasmon fields on the nanofemto scale for applications in chemistry and physics.

1.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plasmon subwavelength optics
,”
Nature
424
,
824
(
2003
).
2.
R. F.
Oulton
,
V. J.
Sorger
,
T.
Zentgraf
,
R. M.
Ma
,
C.
Gladden
,
L.
Dai
,
G.
Bartal
, and
X.
Zhang
, “
Plasmon lasers at deep subwavelength scale
,”
Nature
461
,
629
(
2009
).
3.
L.
Novotny
and
N.
Van Hulst
, “
Antennas for light
,”
Nat. Photonics
5
,
83
(
2011
).
4.
X.-C.
Ma
,
Y.
Dai
,
L.
Yu
, and
B.-B.
Huang
, “
Energy transfer in plasmonic photocatalytic composites
,”
Light: Sci. Appl.
5
,
e16017
(
2016
).
5.
S.
Tan
,
A.
Argondizzo
,
J.
Ren
,
L.
Liu
,
J.
Zhao
, and
H.
Petek
, “
Plasmonic coupling at a metal/semiconductor interface
,”
Nat. Photonics
11
,
806
(
2017
).
6.
R. A.
Pala
,
J.
White
,
E.
Barnard
,
J.
Liu
, and
M. L.
Brongersma
, “
Design of plasmonic thin-film solar cells with broadband absorption enhancements
,”
Adv. Mater.
21
,
3504
3509
(
2009
).
7.
K.
Ueno
,
T.
Oshikiri
,
Q.
Sun
,
X.
Shi
, and
H.
Misawa
, “
Solid-state plasmonic solar cells
,”
Chem. Rev.
118
,
2955
2993
(
2017
).
8.
S.
Nie
and
S. R.
Emory
, “
Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
,”
Science
275
,
1102
1106
(
1997
).
9.
J. N.
Anker
,
W. P.
Hall
,
O.
Lyandres
,
N. C.
Shah
,
J.
Zhao
, and
R. P.
Van Duyne
, “
Biosensing with plasmonic nanosensors
,”
Nat. Mater.
7
,
442
453
(
2008
).
10.
P.
Alivisatos
, “
The use of nanocrystals in biological detection
,”
Nat. Biotechnol.
22
,
47
(
2004
).
11.
H.
Xu
,
E. J.
Bjerneld
,
M.
Käll
, and
L.
Börjesson
, “
Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering
,”
Phys. Rev. Lett.
83
,
4357
(
1999
).
12.
M.
Richard-Lacroix
,
Y.
Zhang
,
Z.
Dong
, and
V.
Deckert
, “
Mastering high resolution tip-enhanced Raman spectroscopy: Towards a shift of perception
,”
Chem. Soc. Rev.
46
,
3922
3944
(
2017
).
13.
J.
Lee
,
K. T.
Crampton
,
N.
Tallarida
, and
V. A.
Apkarian
, “
Visualizing vibrational normal modes of a single molecule with atomically confined light
,”
Nature
568
,
78
(
2019
).
14.
B.
Rothenhäusler
and
W.
Knoll
, “
Surface–plasmon microscopy
,”
Nature
332
,
615
617
(
1988
).
15.
M.
Specht
,
J.
Pedarnig
,
W.
Heckl
, and
T.
Hänsch
, “
Scanning plasmon near-field microscope
,”
Phys. Rev. Lett.
68
,
476
(
1992
).
16.
N. T.
Fofang
,
T. H.
Park
,
O.
Neumann
,
N. A.
Mirin
,
P.
Nordlander
, and
N. J.
Halas
, “
Plexcitonic nanoparticles: Plasmon–exciton coupling in nanoshell−J-aggregate complexes
,”
Nano Lett.
8
,
3481
3487
(
2008
).
17.
W.
Liu
,
B.
Lee
,
C. H.
Naylor
,
H. S.
Ee
,
J.
Park
,
A. C.
Johnson
, and
R.
Agarwal
, “
Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice
,”
Nano Lett.
16
,
1262
1269
(
2016
).
18.
Z.
Li
,
Y.
Li
,
T.
Han
,
X.
Wang
,
Y.
Yu
,
B.
Tay
,
Z.
Liu
, and
Z.
Fang
, “
Tailoring MoS2 exciton–plasmon interaction by optical spin–orbit coupling
,”
ACS Nano
11
,
1165
1171
(
2017
).
19.
R.
Petersen
,
T. G.
Pedersen
, and
F.
Javier García de Abajo
, “
Nonlocal plasmonic response of doped and optically pumped graphene MoS2 and black phosphorus
,”
Phys. Rev. B
96
,
205430
(
2017
).
20.
M.
Pelton
,
M.
Sheldon
, and
J.
Khurgin
, “
Plasmon-exciton coupling
,”
Nanophotonics
8
,
513
516
(
2019
).
21.
J.
Pettine
,
A.
Grubisic
, and
D. J.
Nesbitt
, “
Angle- and momentum-resolved photoelectron velocity map imaging studies of thin Au film and single supported Au nanoshells
,”
J. Phys. Chem. C
122
,
3970
3984
(
2018
).
22.
A. J.
Leenheer
,
P.
Narang
,
N. S.
Lewis
, and
H.
Atwater
, “
Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates
,”
J. Appl. Phys.
115
,
134301
(
2014
).
23.
N.
Thakkar
,
N. P.
Montoni
,
C.
Cherqui
, and
D. J.
Masiello
, “
Plasmonic Landau damping in active environments
,”
Phys. Rev. B
97
,
121403
(
2018
).
24.
X.
Li
,
D.
Xiao
, and
Z.
Zhang
, “
Landau damping of quantum plasmons in metal nanostructures
,”
New J. Phys.
15
,
023011
(
2013
).
25.
R. T.
Kidd
,
D.
Lennon
, and
S. R.
Meech
, “
Surface plasmon enhanced substrate mediated photochemistry on roughened silver
,”
J. Chem. Phys.
113
,
8276
8282
(
2000
).
26.
M.
Reutzel
,
A.
Li
,
B.
Gumhalter
, and
H.
Petek
, “
Nonlinear plasmonic photoelectron response of Ag (111)
,”
Phys. Rev. Lett.
123
,
017404
(
2019
).
27.
J.
Pitarke
,
V.
Silkin
,
E.
Chulkov
, and
P.
Echenique
, “
Theory of surface plasmons and surface-plasmon polaritons
,”
Rep. Prog. Phys.
70
,
1
(
2006
).
28.
Y.
Wang
,
E.
Plummer
, and
K.
Kempa
, “
Foundations of plasmonics
,”
Adv. Phys.
60
,
799
898
(
2011
).
29.
H. U.
Yang
,
J.
D’Archangel
,
M. L.
Sundheimer
,
E.
Tucker
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of silver
,”
Phys. Rev. B
91
,
235137
(
2015
).
30.
S.
Raza
,
S.
Kadkhodazadeh
,
T.
Christensen
,
M.
Di Vece
,
M.
Wubs
,
N. A.
Mortensen
, and
N.
Stenger
, “
Multipole plasmons and their disappearance in few-nanometre silver nanoparticles
,”
Nat. Commun.
6
,
8788
(
2015
).
31.
J.
Mock
,
M.
Barbic
,
D.
Smith
,
D.
Schultz
, and
S.
Schultz
, “
Shape effects in plasmon resonance of individual colloidal silver nanoparticles
,”
J. Chem. Phys.
116
,
6755
6759
(
2002
).
32.
T. W.
Odom
,
E.-A.
You
, and
C. M.
Sweeney
, “
Multiscale plasmonic nanoparticles and the inverse problem
,”
J. Phys. Chem. Lett.
3
,
2611
2616
(
2012
).
33.
J.
Mock
,
S.
Oldenburg
,
D.
Smith
,
D.
Schultz
, and
S.
Schultz
, “
Composite plasmon resonant nanowires
,”
Nano Lett.
2
,
465
469
(
2002
).
34.
S.
Tan
,
L.
Liu
,
Y.
Dai
,
J.
Ren
,
J.
Zhao
, and
H.
Petek
, “
Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions
,”
J. Am. Chem. Soc.
139
,
6160
6168
(
2017
).
35.
M.
Banik
,
K.
Rodriguez
,
E.
Hulkko
, and
V. A.
Apkarian
, “
Orientation-dependent handedness of chiral plasmons on nanosphere dimers: How to turn a right hand into a left hand
,”
ACS Photonics
3
,
2482
2489
(
2016
).
36.
Y.
Nishiyama
and
H.
Okamoto
, “
Near-field nonlinear CD imaging of single gold nanostructures
,”
J. Phys. Chem. C
120
,
28157
28162
(
2016
).
37.
S.
Hashiyada
,
T.
Narushima
, and
H.
Okamoto
, “
Imaging chirality of optical fields near achiral metal nanostructures excited with linearly polarized light
,”
ACS Photonics
5
,
1486
1492
(
2018
).
38.
S.
Hashiyada
,
T.
Narushima
, and
H.
Okamoto
, “
Active control of chiral optical near fields on a single metal nanorod
,”
ACS Photonics
6
,
677
683
(
2019
).
39.
A.
Grubisic
,
E.
Ringe
,
C. M.
Cobley
,
Y.
Xia
,
L. D.
Marks
,
R. P.
Van Duyne
, and
D. J.
Nesbitt
, “
Plasmonic near-electric field enhancement effects in ultrafast photoelectron emission: Correlated spatial and laser polarization microscopy studies of individual Ag nanocubes
,”
Nano Lett.
12
,
4823
4829
(
2012
).
40.
S.
Viarbitskaya
,
A.
Teulle
,
R.
Marty
,
J.
Sharma
,
C.
Girard
,
A.
Arbouet
, and
E.
Dujardin
, “
Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms
,”
Nat. Mater.
12
,
426
(
2013
).
41.
Y.
Dai
,
M.
Dbrowski
,
V. A.
Apkarian
, and
H.
Petek
, “
Ultrafast microscopy of spin-momentum-locked surface plasmon polaritons
,”
ACS Nano
12
,
6588
6596
(
2018
).
42.
Y.
Dai
and
H.
Petek
, “
Plasmonic spin-Hall effect in surface plasmon polariton focusing
,”
ACS Photonics
6
,
2005
2013
(
2019
).
43.
E.
Bauer
,
Surface Microscopy with Low Energy Electrons
(
Springer
,
2014
), Vol. 23.
44.
M.
Dąbrowski
,
Y.
Dai
,
A.
Argondizzo
,
Q.
Zou
,
X.
Cui
, and
H.
Petek
, “
Multiphoton photoemission microscopy of high-order plasmonic resonances at the Ag/Vacuum and Ag/Si interfaces of epitaxial silver nanowires
,”
ACS Photonics
3
,
1704
1713
(
2016
).
45.
D.
Pan
,
H.
Wei
,
L.
Gao
, and
H.
Xu
, “
Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits
,”
Phys. Rev. Lett.
117
,
166803
(
2016
).
46.
K. Y.
Bliokh
and
F.
Nori
, “
Transverse spin of a surface polariton
,”
Phys. Rev. A
85
,
061801
(
2012
).
47.
Y.
Tang
and
A. E.
Cohen
, “
Enhanced enantioselectivity in excitation of chiral molecules by superchiral light
,”
Science
332
,
333
(
2011
).
48.
M.
Dąbrowski
,
Y.
Dai
, and
H.
Petek
, “
Ultrafast microscopy: Imaging light with photoelectrons on the nano–femto scale
,”
J. Phys. Chem. Lett.
8
,
4446
4455
(
2017
).
49.
K. F.
MacDonald
,
Z. L.
Sámson
,
M. I.
Stockman
, and
N. I.
Zheludev
, “
Ultrafast active plasmonics
,”
Nat. Photonics
3
,
55
(
2009
).
50.
R. M.
Tromp
,
J. B.
Hannon
,
A. W.
Ellis
,
W.
Wan
,
A.
Berghaus
, and
O.
Schaff
, “
A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design
,”
Ultramicroscopy
110
,
852
861
(
2010
).
51.
A.
Kubo
,
N.
Pontius
, and
H.
Petek
, “
Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface
,”
Nano Lett.
7
,
470
475
(
2007
).
52.
D.
Kong
and
J.
Drucker
, “
Tuning Ag/Si (100) island size, shape, and density
,”
J. Appl. Phys.
114
,
144310
(
2013
).
53.
L.
Zhang
,
A.
Kubo
,
L.
Wang
,
H.
Petek
, and
T. J.
Seideman
, “
Imaging of surface plasmon polariton fields excited at a nanometer-scale slit
,”
Phys. Rev. B
84
,
245442
(
2011
).
54.
M.
Dąbrowski
,
Y.
Dai
,
M.
Hocevar
,
S.
Frolov
, and
H.
Petek
, “
Nanoscale guiding and shaping of indium droplets
,”
Appl. Phys. Lett.
109
,
261602
(
2016
).
55.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
2007
).
56.
X.
Fan
,
W.
Zheng
, and
D. J.
Singh
, “
Light scattering and surface plasmons on small spherical particles
,”
Light Sci. Appl.
3
,
e179
(
2014
).
57.
S. K.
Kim
,
J. S.
Kim
,
G.
Lee
,
J.
Nogami
,
K. J.
Kong
,
B. D.
Yu
, and
D.
Ahn
, “
Electronic structure of p(2×3) Ag films on Si(100)
,”
J. Korean Phys. Soc.
62
(
1
),
86
91
(
2013
).
58.
F. J.
García de Abajo
,
G.
Gómez-Santos
,
L. A.
Blanco
,
A. G.
Borisov
, and
S. V.
Shabanov
, “
Tunneling mechanism of light transmission through metallic films
,”
Phys. Rev. Lett.
95
,
067403
(
2005
).
59.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer Science & Business Media
,
2007
).
60.
J. P.
Walter
and
M. L.
Cohen
, “
Frequency-and wave-vector-dependent dielectric function for silicon
,”
Phys. Rev. B
5
,
3101
(
1972
).
61.
Q.
Sun
,
H.
Yu
,
K.
Ueno
,
A.
Kubo
,
Y.
Matsuo
, and
H.
Misawa
, “
Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy
,”
ACS Nano
10
,
3835
3842
(
2016
).
62.
K. Y.
Bliokh
,
A. Y.
Bekshaev
,
A. G.
Kofman
, and
F.
Nori
, “
Photon trajectories, anomalous velocities and weak measurements: A classical interpretation
,”
New J. Phys.
15
,
073022
(
2013
).
63.
P. C.
Chaumet
and
M.
Nieto-Vesperinas
, “
Time-averaged total force on a dipolar sphere in an electromagnetic field
,”
Opt. Lett.
25
,
1065
1067
(
2000
).
64.
K. Y.
Bliokh
,
A. Y.
Bekshaev
, and
F.
Nori
, “
Extraordinary momentum and spin in evanescent waves
,”
Nat. Commun.
5
,
3300
(
2014
).
65.
H.
Kim
,
J.
Park
,
S. W.
Cho
,
S. Y.
Lee
,
M.
Kang
, and
B.
Lee
, “
Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens
,”
Nano Lett.
10
,
529
536
(
2010
).
66.
W.-Y.
Tsai
,
J.-S.
Huang
, and
C.-B.
Huang
, “
Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic archimedes spiral
,”
Nano Lett.
14
,
547
552
(
2014
).
67.
G.
Spektor
,
D.
Kilbane
,
A. K.
Mahro
,
B.
Frank
,
S.
Ristok
,
L.
Gal
,
P.
Kahl
,
D.
Podbiel
,
S.
Mathias
,
H.
Giessen
,
F. J. M.
Zu Heringdorf
,
M.
Orenstein
, and
M.
Aeschlimann
, “
Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices
,”
Science
355
,
1187
1191
(
2017
).
68.
G.
Spektor
,
D.
Kilbane
,
A. K.
Mahro
,
M.
Hartelt
,
E.
Prinz
,
M.
Aeschlimann
, and
M.
Orenstein
, “
Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold
,”
Phys. Rev. X
9
,
021031
(
2019
).
69.
Y.
Tang
and
A. E.
Cohen
, “
Optical chirality and its interaction with matter
,”
Phys. Rev. Lett.
104
,
163901
(
2010
).
70.
E.
Hendry
,
T.
Carpy
,
J.
Johnston
,
M.
Popland
,
R. V.
Mikhaylovskiy
,
A. J.
Lapthorn
,
S. M.
Kelly
,
L. D.
Barron
,
N.
Gadegaard
, and
M.
Kadodwala
, “
Ultrasensitive detection and characterization of biomolecules using superchiral fields
,”
Nat. Nanotechnol.
5
,
783
787
(
2010
).
71.
Q.
Guo
,
T.
Fu
,
J.
Tang
,
D.
Pan
,
S.
Zhang
, and
H.
Xu
, “
Routing a chiral Raman signal based on spin-orbit interaction of light
,”
Phys. Rev. Lett.
123
,
183903
(
2019
).
72.
T.
Van Mechelen
and
Z.
Jacob
, “
Universal spin-momentum locking of evanescent waves
,”
Optica
3
,
118
126
(
2016
).
73.
K. Y.
Bliokh
,
D.
Smirnova
, and
F.
Nori
, “
Quantum spin Hall effect of light
,”
Science
348
,
1448
1451
(
2015
).

Supplementary Material

You do not currently have access to this content.