Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems and was recently adapted for use as an active space solver and combined with orbital optimization. In this work, we detail an approach within FCIQMC to allow for efficient sampling of fully internally contracted multireference perturbation theories within the same stochastic framework. Schemes are described to allow for the close control over the resolution of stochastic sampling of the effective higher-body intermediates within the active space. It is found that while complete active space second-order perturbation theory seems less amenable to a stochastic reformulation, strongly contracted N-Electron Valence second-order Perturbation Theory (NEVPT2) is far more stable, requiring a similar number of walkers to converge the sc-NEVPT2 expectation values as to converge the underlying CI problem. We demonstrate the application of the stochastic approach to the computation of sc-NEVPT2 within a (24, 24) active space in a biologically relevant system and show that small numbers of walkers are sufficient for a faithful sampling of the sc-NEVPT2 energy to chemical accuracy, despite the active space already exceeding the limits of practicality for traditional approaches. This raises prospects of an efficient stochastic solver for multireference chemical problems requiring large active spaces, with an accurate treatment of external orbitals.

1.
F. A.
Evangelista
,
J. Chem. Phys.
149
,
030901
(
2018
).
2.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
3.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
4.
A. A.
Holmes
,
C. J.
Umrigar
, and
S.
Sharma
,
J. Chem. Phys.
147
,
164111
(
2017
).
5.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
,
J. Chem. Phys.
58
,
5745
5759
(
1973
).
6.
S.
Evangelisti
,
J.-P.
Daudey
, and
J.-P.
Malrieu
,
Chem. Phys.
75
,
91
102
(
1983
).
7.
Z.
Wang
,
Y.
Li
, and
J.
Lu
,
J. Chem. Theory Comput.
15
,
3558
3569
(
2019
).
8.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
9.
N.
Nakatani
and
S.
Guo
,
J. Chem. Phys.
146
,
094102
(
2017
).
10.
T.
Yanai
,
M.
Saitow
,
X.-G.
Xiong
,
J.
Chalupský
,
Y.
Kurashige
,
S.
Guo
, and
S.
Sharma
,
J. Chem. Theory Comput.
13
,
4829
4840
(
2017
).
11.
S.
Wouters
,
V.
Van Speybroeck
, and
D.
Van Neck
,
J. Chem. Phys.
145
,
054120
(
2016
).
12.
A. Y.
Sokolov
and
G. K.-L.
Chan
,
J. Chem. Phys.
144
,
064102
(
2016
).
13.
S.
Sharma
, arXiv:1803.04341 (
2019
).
14.
G.
Jeanmairet
,
S.
Sharma
, and
A.
Alavi
,
J. Chem. Phys.
146
,
044107
(
2017
).
15.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
5488
(
1990
).
16.
K.
Andersson
,
P. A.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
1226
(
1992
).
17.
J.
Finley
,
P.-A.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
,
Chem. Phys. Lett.
288
,
299
306
(
1998
).
18.
J. P.
Zobel
,
J. J.
Nogueira
, and
L.
González
,
Chem. Sci.
8
,
1482
1499
(
2017
).
19.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
J. Chem. Phys.
117
,
9138
9153
(
2002
).
20.
D.
Zgid
,
D.
Ghosh
,
E.
Neuscamman
, and
G. K.-L.
Chan
,
J. Chem. Phys.
130
,
194107
(
2009
).
21.
Q. M.
Phung
,
S.
Wouters
, and
K.
Pierloot
,
J. Chem. Theory Comput.
12
,
4352
4361
(
2016
).
22.
R. E.
Thomas
,
Q.
Sun
,
A.
Alavi
, and
G. H.
Booth
,
J. Chem. Theory Comput.
11
,
5316
5325
(
2015
).
23.
G.
Li Manni
,
S. D.
Smart
, and
A.
Alavi
,
J. Chem. Theory Comput.
12
,
1245
1258
(
2016
).
24.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
25.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
26.
N. S.
Blunt
,
J. Chem. Phys.
148
,
221101
(
2018
).
27.
C.
Overy
,
G.
Booth
,
N.
Blunt
,
J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2014
).
28.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2012
).
29.
N. S.
Blunt
,
S. D.
Smart
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
143
,
134117
(
2015
).
30.
N. S.
Blunt
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
146
,
244105
(
2017
).
31.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
142
,
184107
(
2015
).
32.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
33.
See https://github.com/ghb24/neci_stable for NECI github web page.
34.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2017
).
35.
T.
Shiozaki
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
36.
N. S.
Blunt
,
A.
Alavi
, and
G. H.
Booth
,
Phys. Rev. Lett.
115
,
050603
(
2015
).
37.
N. S.
Blunt
,
A.
Alavi
, and
G. H.
Booth
,
Phys. Rev. B
98
,
085118
(
2018
).
38.
M.
Rode
and
H.-J.
Werner
,
Theor. Chem. Acc.
114
,
309
317
(
2005
).
You do not currently have access to this content.