Semiconductor–metal heterojunction nanostructures possess an ability to store electrons upon photoexcitation through Fermi level equilibration. The unique role of capping ligands in modulating the equilibration of Fermi level in CdSe–Au heteronanostructures is explored by taking alkyl thiols and alkyl amines as examples. Alkyl thiol having its highest occupied molecular orbital (HOMO) above the valence band of the heterojunction nanostructure inhibits the exciton recombination by scavenging the photogenerated hole. This leads to the elevation in the Fermi level of Au and equilibration with the conduction band of CdSe. The Fermi level equilibrated electrons are further transferred to an acceptor molecule such as methyl viologen, demonstrating the potential of heterojunction nanostructures capped with hole accepting ligands for charge transport application in photovoltaics. In contrast, alkyl amine being a non-hole acceptor ligand with its HOMO placed below its valence band promotes rapid Au mediated exciton recombination, limiting its usefulness in charge transport application. Thus, the energetics of ligands on heterojunction nanostructures plays a decisive role in Fermi level equilibration.

1.
V.
Subramanian
,
E. E.
Wolf
, and
P. V.
Kamat
,
J. Am. Chem. Soc.
126
,
4943
4950
(
2004
).
2.
K. P.
Acharya
,
R. S.
Khnayzer
,
T.
O’Connor
,
G.
Diederich
,
M.
Kirsanova
,
A.
Klinkova
,
D.
Roth
,
E.
Kinder
,
M.
Imboden
, and
M.
Zamkov
,
Nano Lett.
11
,
2919
2926
(
2011
).
3.
K.
Wu
,
H.
Zhu
, and
T.
Lian
,
Acc. Chem. Res.
48
,
851
859
(
2015
).
4.
U.
Soni
,
P.
Tripathy
, and
S.
Sapra
,
J. Phys. Chem. Lett.
5
,
1909
1916
(
2014
).
5.
S. K.
Dutta
,
S. K.
Mehetor
, and
N.
Pradhan
,
J. Phys. Chem. Lett.
6
,
936
944
(
2015
).
6.
J.
Dana
,
P.
Anand
,
S.
Maiti
,
F.
Azlan
,
Y.
Jadhav
,
S. K.
Haram
, and
H. N.
Ghosh
,
J. Phys. Chem. C
122
,
13277
13284
(
2018
).
7.
I.
Robel
,
G.
Girishkumar
,
B. A.
Bunker
,
P. V.
Kamat
, and
K.
Vinodgopal
,
Appl. Phys. Lett.
88
,
073113
(
2006
).
8.
A.
Stevanovic
,
S.
Ma
, and
J. T.
Yates
,
J. Phys. Chem. C
118
,
21275
21280
(
2014
).
9.
S. K.
Balakrishnan
and
P. V.
Kamat
,
ACS Energy Lett.
2
,
88
93
(
2017
).
10.
A.
Wood
,
M.
Giersig
, and
P.
Mulvaney
,
J. Phys. Chem. B
105
,
8810
8815
(
2001
).
11.
B. K.
Patra
,
S.
Khilari
,
D.
Pradhan
, and
N.
Pradhan
,
Chem. Mater.
28
,
4358
4366
(
2016
).
12.
P.
Li
,
Z.
Wei
,
T.
Wu
,
Q.
Peng
, and
Y.
Li
,
J. Am. Chem. Soc.
133
,
5660
5663
(
2011
).
13.
F.
Jin
,
M.-L.
Zhang
,
M.-L.
Zheng
,
Z.-H.
Liu
,
Y.-M.
Fan
,
K.
Xu
,
Z.-S.
Zhao
, and
X.-M.
Duan
,
Phys. Chem. Chem. Phys.
14
,
13180
13186
(
2012
).
14.
T.
Mokari
,
C. G.
Sztrum
,
A.
Salant
,
E.
Rabani
, and
U.
Banin
,
Nat. Mater.
4
,
855
(
2005
).
15.
K.
Wu
,
J.
Chen
,
J. R.
McBride
, and
T.
Lian
,
Science
349
,
632
635
(
2015
).
16.
T.
Okuhata
,
Y.
Kobayashi
,
Y.
Nonoguchi
,
T.
Kawai
, and
N.
Tamai
,
J. Phys. Chem. C
119
,
2113
2120
(
2015
).
17.
G.
Sagarzazu
,
K.
Inoue
,
M.
Saruyama
,
M.
Sakamoto
,
T.
Teranishi
,
S.
Masuo
, and
N.
Tamai
,
Phys. Chem. Chem. Phys.
15
,
2141
2152
(
2013
).
18.
Y.
Kobayashi
,
Y.
Nonoguchi
,
L.
Wang
,
T.
Kawai
, and
N.
Tamai
,
J. Phys. Chem. Lett.
3
,
1111
1116
(
2012
).
19.
H.
Chauhan
,
Y.
Kumar
,
J.
Dana
,
B.
Satpati
,
H. N.
Ghosh
, and
S.
Deka
,
Nanoscale
8
,
15802
15812
(
2016
).
20.
P. V.
Kamat
and
S.
Jin
,
ACS Energy Lett.
3
,
622
623
(
2018
).
21.
C.
Burda
,
T. C.
Green
,
S.
Link
, and
M. A.
El-Sayed
,
J. Phys. Chem. B
103
,
1783
1788
(
1999
).
22.
A.
Thomas
,
K.
Sandeep
,
S. M.
Somasundaran
, and
K. G.
Thomas
,
ACS Energy Lett.
3
,
2368
2375
(
2018
).
23.
A.
Adenier
,
M. M.
Chehimi
,
I.
Gallardo
,
J.
Pinson
, and
N.
Vilà
,
Langmuir
20
,
8243
8253
(
2004
).
24.
S. F.
Wuister
,
C.
de Mello Donegá
, and
A.
Meijerink
,
J. Phys. Chem. B
108
,
17393
17397
(
2004
).
25.
K.
Leung
and
K. B.
Whaley
,
J. Chem. Phys.
110
,
11012
11022
(
1999
).
26.
P.
Guyot-Sionnest
,
B.
Wehrenberg
, and
D.
Yu
,
J. Chem. Phys.
123
,
074709
(
2005
).
27.
M.
Shim
and
P.
Guyot-Sionnest
,
Nature
407
,
981
(
2000
).
28.
M.
Chen
and
P.
Guyot-Sionnest
,
ACS Nano
11
,
4165
4173
(
2017
).
29.
J. D.
Rinehart
,
A. M.
Schimpf
,
A. L.
Weaver
,
A. W.
Cohn
, and
D. R.
Gamelin
,
J. Am. Chem. Soc.
135
,
18782
18785
(
2013
).
30.
M. J.
Natan
,
J. W.
Thackeray
, and
M. S.
Wrighton
,
J. Phys. Chem.
90
,
4089
4098
(
1986
).
31.
D. A.
Hines
and
P. V.
Kamat
,
ACS Appl. Mater. Interfaces
6
,
3041
3057
(
2014
).
32.
M.
Hamada
,
S.
Nakanishi
,
T.
Itoh
,
M.
Ishikawa
, and
V.
Biju
,
ACS Nano
4
,
4445
4454
(
2010
).
33.
I.
Robel
,
V.
Subramanian
,
M.
Kuno
, and
P. V.
Kamat
,
J. Am. Chem. Soc.
128
,
2385
2393
(
2006
).
34.
Y.
Matsumoto
,
R.
Kanemoto
,
T.
Itoh
,
S.
Nakanishi
,
M.
Ishikawa
, and
V.
Biju
,
J. Phys. Chem. C
112
,
1345
1350
(
2008
).
35.
R. A.
Scheidt
,
E.
Kerns
, and
P. V.
Kamat
,
J. Phys. Chem. Lett.
9
,
5962
5969
(
2018
).
36.
K. B.
Subila
,
K.
Sandeep
,
E. M.
Thomas
,
J.
Ghatak
,
S. M.
Shivaprasad
, and
K. G.
Thomas
,
ACS Omega
2
,
5150
5158
(
2017
).
37.
T.
Watanabe
and
K.
Honda
,
J. Phys. Chem.
86
,
2617
2619
(
1982
).

Supplementary Material

You do not currently have access to this content.