Cs is a promoter of Cu-based catalysts for the synthesis of alcohols from CO2 hydrogenation. Scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy were used to study the morphology and chemical properties of surfaces generated by the deposition of cesium on Cu2O/Cu(111) and Cu(111) substrates. CsOx nanostructures were formed after Cs metal was deposited on Cu2O/Cu(111) at 300 K. The formed CsOx protrude over the surface of copper oxide by 2–4 Å, with the dimension at the base of the nanostructures being in the range of 1–3 nm. Heating to elevated temperature induced significant changes in the size and dispersion of the CsOx nanostructures, and there was a clear reconstruction of the copper oxide substrate, which then exhibited long range order with a hexagonally packed structure. The as-deposited and annealed surfaces of CsOx/Cu2O/Cu(111) were more reactive toward CO2 than plain Cu2O/Cu(111) or clean Cu(111). However, none of them were stable in the presence of H2, which fully reduced the copper oxide at 400–450 K. In CsOx/Cu(111), the CsOx nanoclusters were dispersed all over the metallic copper in no particular order. The CsOx species had an average width of 2 nm and ∼1 Å height. The CsOx/Cu(111) systems exhibited the highest activity for the binding and dissociation of CO2, suggesting that the CsOx-copper interface plays a key role in alcohol synthesis.

1.
2.
B. E.
Koel
, and
J.
Kim
, “
Promoters and poisons
,” in
Handbook of Heterogeneous Catalysis
, edited by
G.
Ertl
,
H.
Knözinger
and
S.
Weitkamp
(
Springer–Wiley
,
2008
), Vol. 5, pp.
1
32
.
3.
J. A.
Rodriguez
and
D. W.
Goodman
,
Surf. Sci. Rep.
14
,
1
(
1991
).
4.
M. P.
Kiskinova
,
Studies in Surface Science and Catalysis
, Poisoning and Promotion in Catalysis Based in Surface Science Concepts and Experiments Vol. 70 (
Elsevier
,
1992
), p.
309
.
5.
C.-F.
Huo
,
B.-S.
Wu
,
P.
Gao
,
Y.
Yang
,
Y.-W.
Li
, and
H.
Jiao
,
Angew. Chem., Int. Ed.
50
,
7403
(
2011
).
6.
D. O.
Uner
,
M.
Pruski
,
B. C.
Gerstein
, and
T. S.
King
,
J. Catal.
146
,
530
(
1994
).
7.
C. T.
Campbell
and
B. E.
Koel
,
Surf. Sci.
186
,
393
(
1987
).
8.
J.
Nakamura
,
J. M.
Campbell
, and
C. T.
Campbell
,
J. Chem. Soc., Faraday Trans.
86
,
2725
(
1990
).
9.
Y.-X.
Wang
and
G.-C.
Wang
,
ACS Catal.
9
,
2261
(
2019
).
10.
M.
Maack
,
H.
Friis-Jensen
,
S.
Sckerl
,
J. H.
Larsen
, and
I.
Chorkendorff
,
Top. Catal.
22
,
151
(
2003
).
11.
D. C.
Grinter
,
E.
Rodríguez-Remesal
,
S.
Luo
,
J.
Evans
,
S.
Senanayake
,
D.
Stacchiola
,
J.
Graciani
,
J. F.
Sanz
, and
J. A.
Rodriguez
,
J. Phys. Chem. Lett.
7
,
3866
(
2016
).
12.
C. L.
Pang
,
C. A.
Muryn
,
A. P.
Woodhead
,
H.
Raza
,
S. A.
Haycock
,
V. L.
Dhanak
, and
G.
Thornton
,
Surf. Sci.
583
,
L147
(
2005
).
13.
G.
Preda
,
G.
Pacchioni
,
M.
Chiesa
, and
E.
Giamello
,
Phys. Chem. Chem. Phys.
11
,
8156
(
2009
).
14.
M. A.
San Miguel
,
C. J.
Calzado
, and
J. F.
Sanz
,
J. Phys. Chem. B
105
,
1794
(
2001
).
15.
A.
Yurtsever
,
Y.
Sugimoto
,
M.
Abe
,
K.
Matsunaga
,
I.
Tanaka
, and
S.
Morita
,
Phys. Rev. B
84
,
085413
(
2011
).
16.
A. M.
Kiss
,
M.
Švec
, and
M.
Berkó
,
Surf. Sci.
600
,
3352
(
2006
).
17.
R.
Casonava
,
K.
Prabhakaran
, and
G.
Thornton
,
J. Phys.: Condens. Matter
3
,
S91
(
1991
).
18.
A.
Leybros
,
A.
Grandejan
,
N.
Seyond
,
M.
Messalier
, and
O.
Boutin
,
J. Environ. Chem. Eng.
4
,
1076
(
2016
).
19.
S.
Suleman
,
H. A.
Younus
,
N.
Ahmad
,
Z. A. K.
Khattak
,
H.
Ullah
,
S.
Chaemchuen
, and
F.
Verpoort
,
Catal. Sci. Technol.
9
,
3868
(
2019
).
20.
J.
Tai
,
Q.
Ge
,
R. J.
Davis
, and
M.
Neurock
,
J. Phys. Chem. B
108
,
16798
(
2004
).
21.
J. G.
Nunan
,
K.
Klier
,
C. W.
Young
,
P.
Himelfarb
, and
R. G.
Herman
,
J. Chem. Soc. Chem. Commun.
1986
,
193
(
1986
).
22.
J. G.
Nunan
,
R. G.
Herman
, and
K.
Klier
,
J. Catal.
116
,
222
(
1989
).
23.
A.
Beretta
,
Q.
Sun
,
R. G.
Herman
, and
K.
Klier
,
Ind. Eng. Chem. Res.
35
,
1534
(
1996
).
24.
M. M.
Burcham
,
R. G.
Herman
, and
K.
Klier
,
Ind. Eng. Chem. Res.
37
,
4657
(
1998
).
25.
J. A.
Rodriguez
,
W. D.
Clendening
, and
C. T.
Campbell
,
J. Phys. Chem.
93
,
5238
(
1989
).
26.
B.
Eren
,
R. S.
Weatherup
,
N.
Liakakos
,
G. A.
Somorjai
, and
M.
Salmeron
,
J. Am. Chem. Soc.
138
,
8207
(
2016
).
27.
R. M.
Palomino
,
P. J.
Ramírez
,
Z.
Liu
,
R.
Hamlyn
,
I.
Waluyo
,
M.
Mahapatra
,
I.
Orozco
,
A.
Hunt
,
J. P.
Simonovis
,
S. D.
Senanayake
, and
J. A.
Rodriguez
,
J. Phys. Chem. B
122
,
794
(
2018
).
28.
R. M.
Palomino
,
E.
Stavitski
,
I.
Waluyo
,
Y.
Karen Chen-Wiegart
,
M.
Abeykoon
,
J. T.
Sadowski
,
J. A.
Rodriguez
,
A.
Frenkel
, and
S. D.
Senanayake
,
Synchrotron Radiat. News
30
,
30
(
2017
).
29.
F.
Yang
,
Y. M.
Choi
,
P.
Liu
,
D.
Stacchiola
,
J.
Hrbek
, and
J. A.
Rodriguez
,
J. Am. Chem. Soc.
133
,
11474
(
2011
).
30.
F.
Yang
,
Y.-M.
Choi
,
P.
Liu
,
J.
Hrbek
, and
J. A.
Rodriguez
,
J. Phys. Chem. C
114
,
17042
(
2010
).
31.
F.
Jensen
,
F.
Besenbacher
,
E.
Laegsgaard
, and
I.
Stensgaard
,
Surf. Sci. Lett.
259
,
L774
(
1991
).
32.
A. J.
Therrien
,
R.
Zhang
,
F. R.
Lucci
,
M. D.
Marcinkowski
,
A.
Hensley
,
J.-S.
Mcewen
, and
E. C. H.
Sykes
,
J. Phys. Chem. C
120
,
10879
(
2016
).
33.
J.
Hrbek
,
Y. W.
Yang
, and
J. A.
Rodriguez
,
Surf. Sci.
296
,
164
(
1993
).
34.
J.
Jupille
,
P.
Dolle
, and
H.
Besatqon
,
Surf. Sci.
260
,
271
(
1992
).
35.
H.
Shi
and
K.
Jakobi
,
Surf. Sci.
276
,
12
(
1992
).
36.
W. F.
Egelhoff
,
Surf. Sci. Rep.
6
,
253
(
1987
).
37.
J. A.
Rodriguez
,
D. C.
Grinter
,
P. J.
Ramirez
,
D. J.
Stacchiola
, and
S.
Senanayake
,
J. Phys. Chem. C
122
,
4324
(
2018
).
38.
M.
Roiaz
,
L.
Falivene
,
C.
Rameshan
,
L.
Cavallo
,
S. M.
Kozlov
, and
G.
Rupprechter
,
J. Phys. Chem. C
123
,
8112
(
2019
).
You do not currently have access to this content.