The mechanism of vibrational relaxation and dissociation in the O2–O system at elevated temperatures is investigated by means of molecular dynamics. The most recent O3 potential energy surfaces (PESs), obtained from the first principles quantum mechanical calculations [Varga et al., J. Chem. Phys. 147, 154312 (2017)], are used to derive a complete set of state-specific rate coefficients of vibrational energy transfer and dissociation. Unlike most of the previous efforts that utilize only the lowest and supposedly most reactive 11A′ O3 PES [A. Varandas and A. Pais, Mol. Phys. 65, 843 (1988)], this paper demonstrates the necessity to account for a complete ensemble of all excited O3 PESs that correlate with O2(X) and O(3P) when high-temperature kinetics is of interest. At the same time, it is found that the Varandas 11A′ O3 PES adequately describes vibrational energy transfer and dissociating dynamics when compared to the most recent 11A′ O3 PES by Varga et al. [J. Chem Phys. 147, 154312 (2017)]. The differences between this new dataset and previous rate coefficients are quantified by the master equation model.

1.
I. A.
Leyva
,
Phys. Today
70
(
11
),
30
(
2017
).
2.
G. V.
Candler
,
Annu. Rev. Fluid Mech.
51
,
379
(
2019
).
3.
M.
Panesi
,
R. L.
Jaffe
,
D. W.
Schwenke
, and
T. E.
Magin
,
J. Chem. Phys.
138
,
044312
(
2013
).
4.
J. G.
Kim
and
I. D.
Boyd
,
Chem. Phys.
446
,
76
(
2015
).
5.
D. A.
Andrienko
and
I. D.
Boyd
,
J. Chem. Phys.
144
,
104301
(
2016
).
6.
F.
Esposito
,
I.
Armenise
,
G.
Capitta
, and
M.
Capitelli
,
Chem. Phys.
351
,
91
(
2008
).
7.
H.
Luo
,
M.
Kulakhmetov
, and
A.
Alexeenko
,
J. Chem. Phys.
146
,
074303
(
2017
).
8.
P.
Valentini
,
T. E.
Schwartzentruber
,
J. D.
Bender
,
I.
Nompelis
, and
G. V.
Candler
,
Phys. Fluids
27
,
086102
(
2015
).
9.
R.
Macdonald
,
M.
Grover
,
T. E.
Schwartzentruber
, and
M.
Panesi
,
J. Chem. Phys.
148
,
054310
(
2018
).
10.
S. F.
Gimelshein
and
I. J.
Wysong
, “
Impact of the ionization reaction set in nonequilibrium hypersonic air flows
,”
AIAA J.
(published online).
11.
R. S.
Chaudhry
,
J. D.
Bender
,
T. E.
Schwartzentruber
, and
G. V.
Candler
,
J. Thermophys. Heat Transfer
32
,
833
(
2018
).
12.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
John Wiley & Sons
,
1989
).
13.
R.
Jaffe
,
D.
Schwenke
, and
G.
Chaban
, in
10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(
American Institute of Aeronautics and Astronautics
,
2010
), p.
4517
.
14.
Y.
Paukku
,
K. R.
Yang
,
Z.
Varga
, and
D. G.
Truhlar
,
J. Chem. Phys.
139
,
044309
(
2013
).
15.
T. J.
Wilson
,
T.-J.
Pan
, and
K. A.
Stephani
, in
2018 AIAA Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
2018
), p.
1487
.
16.
A.
Varandas
and
A.
Pais
,
Mol. Phys.
65
,
843
(
1988
).
17.
Z.
Varga
,
Y.
Paukku
, and
D. G.
Truhlar
,
J. Chem. Phys.
147
,
154312
(
2017
).
18.
M. S.
Grover
,
T. E.
Schwartzentruber
,
Z.
Varga
, and
D. G.
Truhlar
,
J. Thermophys. Heat Transfer
33
,
797
(
2019
).
19.
P.
Valentini
and
T. E.
Schwartzentruber
,
Phys. Fluids
21
,
066101
(
2009
).
20.
R. B.
Bernstein
,
Atom-molecule Collision Theory: A Guide for the Experimentalist
(
Springer Science & Business Media
,
2013
).
21.
L.
Bonnet
,
Int. Rev. Phys. Chem.
32
,
171
(
2013
).
22.
F.
Esposito
and
I.
Armenise
,
J. Phys. Chem. A
121
,
6211
(
2017
).
23.
J.
Breen
,
R.
Quy
, and
G.
Glass
,
J. Chem. Phys.
59
,
556
(
1973
).
24.
J. H.
Kiefer
and
R. W.
Lutz
,
Symp. (Int.) Combust.
11
,
67
(
1967
).
25.
E. E.
Nikitin
,
Theory of Elementary Atomic and Molecular Processes in Gases
(
Clarendon Press
,
Oxford
,
1974
).
26.
O.
Shatalov
,
Combust., Explosion, Shock Waves
9
,
610
(
1973
).
27.
J.
Day
and
D.
Murthy
,
J. Comput. Appl. Math.
8
,
21
(
1982
).
28.
C.
Park
,
J. Thermophys. Heat Transfer
18
,
527
(
2004
).
You do not currently have access to this content.