The Bethe-Salpeter equation (BSE) based on GW quasiparticle levels is a successful approach for calculating the optical gaps and spectra of solids and also for predicting the neutral excitations of small molecules. We here present an all-electron implementation of the GW+BSE formalism for molecules, using numeric atom-centered orbital (NAO) basis sets. We present benchmarks for low-lying excitation energies for a set of small organic molecules, denoted in the literature as “Thiel’s set.” Literature reference data based on Gaussian-type orbitals are reproduced to about one millielectron-volt precision for the molecular benchmark set, when using the same GW quasiparticle energies and basis sets as the input to the BSE calculations. For valence correlation consistent NAO basis sets, as well as for standard NAO basis sets for ground state density-functional theory with extended augmentation functions, we demonstrate excellent convergence of the predicted low-lying excitations to the complete basis set limit. A simple and affordable augmented NAO basis set denoted “tier2+aug2” is recommended as a particularly efficient formulation for production calculations. We finally demonstrate that the same convergence properties also apply to linear-response time-dependent density functional theory within the NAO formalism.

1.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
2.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
352
(
2007
).
3.
H.
Sekino
and
R. J.
Bartlett
, “
A linear response, coupled-cluster theory for excitation energy
,”
Int. J. Quantum Chem.
26
,
255
265
(
1984
).
4.
B. O.
Roos
,
P. R.
Taylor
, and
P. E.
Siegbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
5.
K.
Andersson
,
P.-Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
6.
J.
Finley
,
P.-A.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
7.
G.
Ghigo
,
B. O.
Roos
, and
P.
Malmqvist
, “
A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2)
,”
Chem. Phys. Lett.
396
,
142
149
(
2004
).
8.
J. C.
Grossman
,
M.
Rohlfing
,
L.
Mitas
,
S. G.
Louie
, and
M. L.
Cohen
, “
High accuracy many-body calculational approaches for excitations in molecules
,”
Phys. Rev. Lett.
86
,
472
475
(
2001
).
9.
M. L.
Tiago
,
P. R. C.
Kent
,
R. Q.
Hood
, and
F. A.
Reboredo
, “
Neutral and charged excitations in carbon fullerenes from first-principles many-body theories
,”
J. Chem. Phys.
129
,
084311
(
2008
).
10.
D.
Lee
,
J. L.
DuBois
, and
Y.
Kanai
, “
Importance of excitonic effect in charge separation at quantum-dot/organic interface: First-principles many-body calculations
,”
Nano Lett.
14
,
6884
6888
(
2014
).
11.
N. S.
Blunt
,
S. D.
Smart
,
G. H.
Booth
, and
A.
Alavi
, “
An excited-state approach within full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
143
,
134117
(
2015
).
12.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
1000
(
1984
).
13.
M.
Marques
and
E.
Gross
, “
Time-dependent density functional theory
,”
Annu. Rev. Phys. Chem.
55
,
427
455
(
2004
).
14.
M. E.
Casida
, “
Time-dependent density-functional theory for molecules and molecular solids
,”
J. Mol. Struct.
914
,
3
18
(
2009
).
15.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
, “
Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold
,”
J. Chem. Phys.
108
,
4439
4449
(
1998
).
16.
L.
Hedin
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
A823
(
1965
).
17.
E. E.
Salpeter
and
H. A.
Bethe
, “
A relativistic equation for bound-state problems
,”
Phys. Rev.
84
,
1232
1242
(
1951
).
18.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
,”
Phys. Rev. B
34
,
5390
5413
(
1986
).
19.
M.
Rohlfing
and
S. G.
Louie
, “
Electron-hole excitations in semiconductors and insulators
,”
Phys. Rev. Lett.
81
,
2312
2315
(
1998
).
20.
M.
Rohlfing
and
S. G.
Louie
, “
Electron-hole excitations and optical spectra from first principles
,”
Phys. Rev. B
62
,
4927
4944
(
2000
).
21.
G.
Strinati
, “
Application of the Green’s functions method to the study of the optical properties of semiconductors
,”
Riv. Nuovo Cimento
11
,
1
86
(
1988
).
22.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body Green’s-function approaches
,”
Rev. Mod. Phys.
74
,
601
659
(
2002
).
23.
X.
Blase
,
I.
Duchemin
, and
D.
Jacquemin
, “
The Bethe–Salpeter equation in chemistry: Relations with TD-DFT, applications and challenges
,”
Chem. Soc. Rev.
47
,
1022
1043
(
2018
).
24.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3
,”
J. Chem. Phys.
128
,
134110
(
2008
).
25.
D.
Jacquemin
,
E. A.
Perpéte
,
I.
Ciofini
, and
C.
Adamo
, “
Assessment of functionals for TD-DFT calculations of singlet-triplet transitions
,”
J. Chem. Theory Comput.
6
,
1532
1537
(
2010
).
26.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction
,”
J. Chem. Phys.
129
,
104103
(
2008
).
27.
Y.
Imamura
and
H.
Nakai
, “
Time-dependent density functional theory (TDDFT) calculations for core-excited states: Assessment of an exchange functional combining the Becke88 and van Leeuwen–Baerends-type functionals
,”
Chem. Phys. Lett.
419
,
297
303
(
2006
).
28.
R.
Baer
and
D.
Neuhauser
, “
Density functional theory with correct long-range asymptotic behavior
,”
Phys. Rev. Lett.
94
,
043002
(
2005
).
29.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
N.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
, “
Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional
,”
Phys. Rev. Lett.
109
,
226405
(
2012
).
30.
K.
Okuno
,
Y.
Shigeta
,
R.
Kishi
,
H.
Miyasaka
, and
M.
Nakano
, “
Tuned CAM-B3LYP functional in the time-dependent density functional theory scheme for excitation energies and properties of diarylethene derivatives
,”
J. Photochem. Photobiol. A: Chem.
235
,
29
34
(
2012
).
31.
D. J.
Tozer
and
N. C.
Handy
, “
Improving virtual Kohn-Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities
,”
J. Chem. Phys.
109
,
10180
10189
(
1998
).
32.
A.
Dreuw
and
M.
Head-Gordon
, “
Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes
,”
J. Am. Chem. Soc.
126
,
4007
4016
(
2004
).
33.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
35.
S.
Kümmel
, “
Charge-transfer excitations: A challenge for time-dependent density functional theory that has been met
,”
Adv. Energy Mater.
7
,
1700440
(
2017
).
36.
S.
Albrecht
,
L.
Reining
,
R.
Del Sole
, and
G.
Onida
, “
Ab initio calculation of excitonic effects in the optical spectra of semiconductors
,”
Phys. Rev. Lett.
80
,
4510
4513
(
1998
).
37.
L. X.
Benedict
,
E. L.
Shirley
, and
R. B.
Bohn
, “
Optical absorption of insulators and the electron-hole interaction: An ab initio calculation
,”
Phys. Rev. Lett.
80
,
4514
4517
(
1998
).
38.
E. L.
Shirley
, “
Ab initio inclusion of electron-hole attraction: Application to x-ray absorption and resonant inelastic x-ray scattering
,”
Phys. Rev. Lett.
80
,
794
797
(
1998
).
39.
C. D.
Spataru
,
S.
Ismail-Beigi
,
L. X.
Benedict
, and
S. G.
Louie
, “
Excitonic effects and optical spectra of single-walled carbon nanotubes
,”
Phys. Rev. Lett.
92
,
077402
(
2004
).
40.
M. L.
Tiago
and
J. R.
Chelikowsky
, “
Optical excitations in organic molecules, clusters, and defects studied by first-principles Green’s function methods
,”
Phys. Rev. B
73
,
205334
(
2006
).
41.
Y.
Ma
,
M.
Rohlfing
, and
C.
Molteni
, “
Excited states of biological chromophores studied using many-body perturbation theory: Effects of resonant-antiresonant coupling and dynamical screening
,”
Phys. Rev. B
80
,
241405
(
2009
).
42.
X.
Blase
,
P.
Boulanger
,
F.
Bruneval
,
M.
Fernandez-Serra
, and
I.
Duchemin
, “
GW and Bethe-Salpeter study of small water clusters
,”
J. Chem. Phys.
144
,
034109
(
2016
).
43.
F.
Bruneval
,
S. M.
Hamed
, and
J. B.
Neaton
, “
A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules
,”
J. Chem. Phys.
142
,
244101
(
2015
).
44.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
, “
Benchmarking the Bethe-Salpeter formalism on a standard organic molecular set
,”
J. Chem. Theory Comput.
11
,
3290
3304
(
2015
).
45.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
, “
Is the Bethe-Salpeter formalism accurate for excitation energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD
,”
J. Phys. Chem. Lett.
8
,
1524
1529
(
2017
).
46.
K.
Krause
and
W.
Klopper
, “
Implementation of the Bethe-Salpeter equation in the TURBOMOLE program
,”
J. Comput. Chem.
38
,
383
388
(
2017
).
47.
C.
Azarias
,
I.
Duchemin
,
X.
Blase
, and
D.
Jacquemin
, “
Bethe-Salpeter study of cationic dyes: Comparisons with ADC(2) and TD-DFT
,”
J. Chem. Phys.
146
,
034301
(
2017
).
48.
D.
Hirose
,
Y.
Noguchi
, and
O.
Sugino
, “
Quantitative characterization of exciton from GW+Bethe-Salpeter calculation
,”
J. Chem. Phys.
146
,
044303
(
2017
).
49.
J.
Li
,
M.
Holzmann
,
I.
Duchemin
,
X.
Blase
, and
V.
Olevano
, “
Helium atom excitations by the GW and Bethe-Salpeter many-body formalism
,”
Phys. Rev. Lett.
118
,
163001
(
2017
).
50.
T.
Rangel
,
S. M.
Hamed
,
F.
Bruneval
, and
J. B.
Neaton
, “
An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation
,”
J. Chem. Phys.
146
,
194108
(
2017
).
51.
X.
Gui
,
C.
Holzer
, and
W.
Klopper
, “
Accuracy assessment of GW starting points for calculating molecular excitation energies using the Bethe–Salpeter formalism
,”
J. Chem. Theory Comput.
14
,
2127
2136
(
2018
).
52.
W. G.
Aulbur
,
L.
Jönsson
, and
J. W.
Wilkins
, “
Quasiparticle calculations in solids
,”
Solid State Phys.
54
,
1
218
(
2000
).
53.
D.
Golze
,
M.
Dvorak
, and
P.
Rinke
, “
The GW compendium: A practical guide to theoretical photoemission spectroscopy
,”
Front. Chem.
7
,
377
(
2019
).
54.
F.
Aryasetiawan
and
O.
Gunnarsson
, “
Electronic structure of NiO in the GW approximation
,”
Phys. Rev. Lett.
74
,
3221
3224
(
1995
).
55.
S. V.
Faleev
,
M.
van Schilfgaarde
, and
T.
Kotani
, “
All-electron self-consistent GW approximation: Application to Si, MnO, and NiO
,”
Phys. Rev. Lett.
93
,
126406
(
2004
).
56.
F.
Kaplan
,
F.
Weigend
, and
M. J.
van Setten
, “
Quasi-particle self-consistent GW for molecules
,”
J. Chem. Theory Comput.
12
,
2528
2541
(
2016
).
57.
B.
Baumeier
,
M.
Rohlfing
, and
D.
Andrienko
,
J. Chem. Theory Comput.
10
,
3104
(
2014
).
58.
F.
Caruso
,
P.
Rinke
,
X.
Ren
,
M.
Scheffler
, and
A.
Rubio
,
Phys. Rev. B
86
,
081102
(
2012
).
59.
N.
Marom
,
F.
Caruso
,
X.
Ren
,
O. T.
Hofmann
,
T.
Körzdörfer
,
J. R.
Chelikowsky
,
A.
Rubio
,
M.
Scheffler
, and
P.
Rinke
, “
Benchmark of GW methods for azabenzenes
,”
Phys. Rev. B
86
,
245127
(
2012
).
60.
F.
Bruneval
, “
Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies
,”
J. Chem. Phys.
136
,
194107
(
2012
).
61.
T. A.
Pham
,
H.-V.
Nguyen
,
D.
Rocca
, and
G.
Galli
,
Phys. Rev. B
87
,
155148
(
2013
).
62.
F.
Caruso
,
P.
Rinke
,
X.
Ren
,
A.
Rubio
, and
M.
Scheffler
,
Phys. Rev. B
88
,
075105
(
2013
).
63.
F.
Bruneval
and
M. A. L.
Marques
,
J. Chem. Theory Comput.
9
,
324
(
2013
).
64.
C.
Faber
,
C.
Attaccalite
,
V.
Olevano
,
E.
Runge
, and
X.
Blase
,
Phys. Rev. B
83
,
115123
(
2011
).
65.
M. J.
van Setten
,
F.
Weigend
, and
F.
Evers
,
J. Chem. Theory Comput.
9
,
232
(
2013
).
66.
C.
Faber
,
P.
Boulanger
,
C.
Attaccalite
,
I.
Duchemin
, and
X.
Blase
, “
Excited states properties of organic molecules: From density functional theory to the GW and Bethe-Salpeter Green’s function formalisms
,”
Philos. Trans. R. Soc., A
372
,
20130271
(
2014
).
67.
V.
Atalla
,
M.
Yoon
,
F.
Caruso
,
P.
Rinke
, and
M.
Scheffler
,
Phys. Rev. B
88
,
165122
(
2013
).
68.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
, “
Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions
,”
New J. Phys.
14
,
053020
(
2012
).
69.
X.
Blase
and
C.
Attaccalite
, “
Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach
,”
Appl. Phys. Lett.
99
,
171909
(
2011
).
70.
D.
Rocca
,
D.
Lu
, and
G.
Galli
, “
Ab initio calculations of optical absorption spectra: Solution of the Bethe–Salpeter equation within density matrix perturbation theory
,”
J. Chem. Phys.
133
,
164109
(
2010
).
71.
B.
Baumeier
,
D.
Andrienko
, and
M.
Rohlfing
, “
Frenkel and charge-transfer excitations in donor–acceptor complexes from many-body Green’s functions theory
,”
J. Chem. Theory Comput.
8
,
2790
2795
(
2012
).
72.
C.
Faber
,
P.
Boulanger
,
I.
Duchemin
,
C.
Attaccalite
, and
X.
Blase
, “
Many-body Green’s function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide
,”
J. Chem. Phys.
139
,
194308
(
2013
).
73.
C.
Faber
,
I.
Duchemin
,
T.
Deutsch
, and
X.
Blase
,
Phys. Rev. B
86
,
155315
(
2012
).
74.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J. A.
Majewski
, and
M.
Levy
, “
Generalized Kohn-Sham schemes and the band-gap problem
,”
Phys. Rev. B
53
,
3764
3774
(
1996
).
75.
F.
Bruneval
,
T.
Rangel
,
S. M.
Hamed
,
M.
Shao
,
C.
Yang
, and
J. B.
Neaton
, “
MOLGW 1: Many-body perturbation theory software for atoms, molecules, and clusters
,”
Comput. Phys. Commun.
208
,
149
161
(
2016
).
76.
X.
Blase
,
I.
Duchemin
,
P.
Boulanger
,
C.
Faber
,
C.
Attacalite
,
V.
Olevano
,
J.
Li
, and
G.
D’Avino
, The Fiesta Code (last retrieved October 23, 2019).
77.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
4
,
91
100
(
2014
).
78.
C.
Holzer
and
W.
Klopper
, “
Ionized, electron-attached, and excited states of molecular systems with spin–orbit coupling: Two-component GW and Bethe–Salpeter implementations
,”
J. Chem. Phys.
150
,
204116
(
2019
).
79.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
,
1269
1289
(
2012
).
80.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
, “
yambo: An ab initio tool for excited state calculations
,”
Comput. Phys. Commun.
180
,
1392
1403
(
2009
).
81.
X.
Gonze
,
B.
Amadon
,
P.-M.
Anglade
,
J.-M.
Beuken
,
F.
Bottin
,
P.
Boulanger
,
F.
Bruneval
,
D.
Caliste
,
R.
Caracas
,
M.
Côté
,
T.
Deutsch
,
L.
Genovese
,
P.
Ghosez
,
M.
Giantomassi
,
S.
Goedecker
,
D.
Hamann
,
P.
Hermet
,
F.
Jollet
,
G.
Jomard
,
S.
Leroux
,
M.
Mancini
,
S.
Mazevet
,
M.
Oliveira
,
G.
Onida
,
Y.
Pouillon
,
T.
Rangel
,
G.-M.
Rignanese
,
D.
Sangalli
,
R.
Shaltaf
,
M.
Torrent
,
M.
Verstraete
,
G.
Zerah
, and
J.
Zwanziger
, “
ABINIT: First-principles approach to material and nanosystem properties
,”
Comput. Phys. Commun.
180
,
2582
2615
(
2009
).
82.
X.
Gonze
,
F.
Jollet
,
F. A.
Araujo
,
D.
Adams
,
B.
Amadon
,
T.
Applencourt
,
C.
Audouze
,
J.-M.
Beuken
,
J.
Bieder
,
A.
Bokhanchuk
,
E.
Bousquet
,
F.
Bruneval
,
D.
Caliste
,
M.
Côté
,
F.
Dahm
,
F. D.
Pieve
,
M.
Delaveau
,
M. D.
Gennaro
,
B.
Dorado
,
C.
Espejo
,
G.
Geneste
,
L.
Genovese
,
A.
Gerossier
,
M.
Giantomassi
,
Y.
Gillet
,
D.
Hamann
,
L.
He
,
G.
Jomard
,
J. L.
Janssen
,
S. L.
Roux
,
A.
Levitt
,
A.
Lherbier
,
F.
Liu
,
I.
Lukačević
,
A.
Martin
,
C.
Martins
,
M.
Oliveira
,
S.
Poncé
,
Y.
Pouillon
,
T.
Rangel
,
G.-M.
Rignanese
,
A.
Romero
,
B.
Rousseau
,
O.
Rubel
,
A.
Shukri
,
M.
Stankovski
,
M.
Torrent
,
M. V.
Setten
,
B. V.
Troeye
,
M.
Verstraete
,
D.
Waroquiers
,
J.
Wiktor
,
B.
Xu
,
A.
Zhou
, and
J.
Zwanziger
, “
Recent developments in the ABINIT software package
,”
Comput. Phys. Commun.
205
,
106
131
(
2016
).
83.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
84.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter.
21
,
395502
(
2009
).
85.
A.
Gulans
,
S.
Kontur
,
C.
Meisenbichler
,
D.
Nabok
,
P.
Pavone
,
S.
Rigamonti
,
S.
Sagmeister
,
U.
Werner
, and
C.
Draxl
, “
Exciting: A full-potential all-electron package implementing density-functional theory and many-body perturbation theory
,”
J. Phys.: Condens. Matter.
26
,
363202
(
2014
).
86.
C.
Vorwerk
,
B.
Aurich
,
C.
Cocchi
, and
C.
Draxl
, “
Bethe–Salpeter equation for absorption and scattering spectroscopy: Implementation in the exciting code
,”
Electron. Struct.
1
,
037001
(
2019
).
87.
K.
Dewhurst
,
S.
Sharma
,
L.
Nordström
,
F.
Cricchio
,
O.
Granäs
,
H.
Gross
,
C.
Ambrosch-Draxl
,
C.
Persson
,
F.
Bultmark
,
C.
Brouder
,
R.
Armiento
,
A.
Chizmeshya
,
P.
Anderson
,
I.
Nekrasov
,
F.
Wagner
,
F.
Kalarasse
,
J.
Spitaler
,
S.
Pittalis
,
N.
Lathiotakis
,
T.
Burnus
,
S.
Sagmeister
,
C.
Meisenbichler
,
S.
Lebègue
,
Y.
Zhang
,
F.
Körmann
,
A.
Baranov
,
A.
Kozhevnikov
,
S.
Suehara
,
F.
Essenberger
,
A.
Sanna
,
T.
McQueen
,
T.
Baldsiefen
,
M.
Blaber
,
A.
Filanovich
,
T.
Björkman
,
M.
Stankovski
,
J.
Goraus
,
M.
Meinert
,
D.
Rohr
,
V.
Nazarov
,
K.
Krieger
,
A.
Davydov
,
F.
Eich
,
A.
Romero Castro
,
K.
Kitahara
,
J.
Glasbrenner
,
K.
Bussmann
,
I.
Mazin
,
M.
Verstraete
,
D.
Ernsting
,
S.
Dugdale
,
P.
Elliott
,
M.
Dulak
,
J. A.
Flores Livas
,
S.
Cottenier
,
Y.
Shinohara
,
M.
Fechner
,
Y.
Kvashnin
,
T.
Müller
,
A.
Gerasimov
,
M. D.
Le
,
J. L.
Bartolomé
,
R.
Wirnata
,
J.
Kumar
, and
A.
Shyichuk
, The ELK code (last retrieved October 23, 2019).
88.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
89.
I. Y.
Zhang
,
X.
Ren
,
P.
Rinke
,
V.
Blum
, and
M.
Scheffler
, “
Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar
,”
New J. Phys.
15
,
123033
(
2013
).
90.
V.
Havu
,
V.
Blum
,
P.
Havu
, and
M.
Scheffler
, “
Efficient integration for all-electron electronic structure calculation using numeric basis functions
,”
J. Comput. Phys.
228
,
8367
8379
(
2009
).
91.
A. C.
Ihrig
,
J.
Wieferink
,
I. Y.
Zhang
,
M.
Ropo
,
X.
Ren
,
P.
Rinke
,
M.
Scheffler
, and
V.
Blum
, “
Accurate localized resolution of identity approach for linear-scaling hybrid density functionals and for many-body perturbation theory
,”
New J. Phys.
17
,
093020
(
2015
).
92.
V. W.
Yu
,
F.
Corsetti
,
A.
García
,
W. P.
Huhn
,
M.
Jacquelin
,
W.
Jia
,
B.
Lange
,
L.
Lin
,
J.
Lu
,
W.
Mi
,
A.
Seifitokaldani
,
A.
Vázquez-Mayagoitia
,
C.
Yang
,
H.
Yang
, and
V.
Blum
, “
ELSI: A unified software interface for Kohn–Sham electronic structure solvers
,”
Comput. Phys. Commun.
222
,
267
285
(
2018
).
93.
A.
Marek
,
V.
Blum
,
R.
Johanni
,
V.
Havu
,
B.
Lang
,
T.
Auckenthaler
,
A.
Heinecke
,
H.-J.
Bungartz
, and
H.
Lederer
, “
The ELPA library: Scalable parallel eigenvalue solutions for electronic structure theory and computational science
,”
J. Phys.: Condens. Matter.
26
,
213201
(
2014
).
94.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation energy
,”
Phys. Rev. B
45
,
13244
13249
(
1992
).
95.
H. N.
Rojas
,
R. W.
Godby
, and
R. J.
Needs
, “
Space-time method for ab initio calculations of self-energies and dielectric response functions of solids
,”
Phys. Rev. Lett.
74
,
1827
1830
(
1995
).
96.
H. J.
Vidberg
and
J. W.
Serene
, “
Solving the Eliashberg equations by means of N-point Padé approximants
,”
J. Low Temp. Phys.
29
,
179
192
(
1977
).
97.
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
, “
GW100: Benchmarking G0W0 for molecular systems
,”
J. Chem. Theory Comput.
11
,
5665
5687
(
2015
).
98.
D.
Golze
,
J.
Wilhelm
,
M. J.
van Setten
, and
P.
Rinke
, “
Core-level binding energies from GW: An efficient full-frequency approach within a localized basis
,”
J. Chem. Theory Comput.
14
,
4856
4869
(
2018
).
99.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
, “
Assessment of the convergence of partially self-consistent BSE/GW calculations
,”
Mol. Phys.
114
,
957
967
(
2016
).
100.
F.
Bechstedt
,
Many-Body Approach to Electronic Excitations: Concepts and Application
(
Springer Berlin Heidelberg
,
2015
).
101.
L. X.
Benedict
,
E. L.
Shirley
, and
R. B.
Bohn
, “
Theory of optical absorption in diamond, Si, Ge, and GaAs
,”
Phys. Rev. B
57
,
R9385
R9387
(
1998
).
102.
D.
Jacquemin
,
I.
Duchemin
,
A.
Blondel
, and
X.
Blase
, “
Assessment of the accuracy of the Bethe-Salpeter (BSE/GW) oscillator strengths
,”
J. Chem. Theory Comput.
12
,
3969
3981
(
2016
).
103.
M. E.
Casida
,
Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals
(
Elsevier
,
Amsterdam
,
1996
).
104.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by
D.
Chong
(
World Scientific
,
Singapore
,
1995
), pp.
155
192
, https://www.worldscientific.com/doi/pdf/10.1142/9789812830586_0005.
105.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm-Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
106.
F.
Furche
and
K.
Burke
, “
Time-dependent density functional theory in quantum chemistry
,” in
Annual Reports in Computational Chemistry
, edited by
D. C.
Spellmeyer
(
Elsevier
,
2005
), Vol. 1, Chap. 2, pp.
19
30
.
107.
J. L.
Whitten
, “
Coulomb potential energy integrals and approximations
,”
J. Chem. Phys.
58
,
4496
(
1973
).
108.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
, “
On some approximations of Xα method
,”
J. Chem. Phys.
71
,
3396
(
1979
).
109.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
, “
Use of approximate integrals in ab initio theory, an application in MP2 energy calculations
,”
Chem. Phys. Lett.
208
,
359
(
1993
).
110.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
,
514
(
1993
).
111.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
, “
RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency
,”
Chem. Phys. Lett.
294
,
143
(
1998
).
112.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian basis sets for atoms Li to Kr
,”
J. Chem. Phys.
97
,
2571
2577
(
1992
).
113.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
114.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
115.
M.
Palummo
,
C.
Hogan
,
F.
Sottile
,
P.
Bagala
, and
A.
Rubio
, “
Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation
,”
J. Chem. Phys.
131
,
084102
(
2009
).
116.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
117.
S. R.
Jensen
,
S.
Saha
,
J. A.
Flores-Livas
,
W.
Huhn
,
V.
Blum
,
S.
Goedecker
, and
L.
Frediani
, “
The elephant in the room of density functional theory calculations
,”
J. Phys. Chem. Lett.
8
,
1449
1457
(
2017
).
118.
P.
Umari
,
G.
Stenuit
, and
S.
Baroni
, “
Optimal representation of the polarization propagator for large-scale GW calculations
,”
Phys. Rev. B
79
,
201104
(
2009
).
119.
H.
Jiang
and
P.
Blaha
, “
GW with linearized augmented plane waves extended by high-energy local orbitals
,”
Phys. Rev. B
93
,
115203
(
2016
).
120.
K.
Pierloot
, “
The CASPT2 method in inorganic electronic spectroscopy: From ionic transition metal to covalent actinide complexes
,”
Mol. Phys.
101
,
2083
2094
(
2003
).
121.
V.
Veryazov
,
P.
Malmqvist
, and
B. O.
Roos
, “
How to select active space for multiconfigurational quantum chemistry?
,”
Int. J. Quantum Chem.
111
,
3329
3338
(
2011
).
122.
C. J.
Stein
and
M.
Reiher
, “
Automated selection of active orbital spaces
,”
J. Chem. Theory Comput.
12
,
1760
1771
(
2016
).
123.
N. A.
Besley
, “
Calculation of the electronic spectra of molecules in solution and on surfaces
,”
Chem. Phys. Lett.
390
,
124
129
(
2004
).
124.
M. A.
Marques
,
M. J.
Oliveira
, and
T.
Burnus
, “
Libxc: A library of exchange and correlation functionals for density functional theory
,”
Comput. Phys. Commun.
183
,
2272
2281
(
2012
).
125.
S.
Lehtola
,
C.
Steigemann
,
M. J.
Oliveira
, and
M. A.
Marques
, “
Recent developments in libxc—A comprehensive library of functionals for density functional theory
,”
SoftwareX
7
,
1
5
(
2018
).
126.
F.
Bruneval
, “
Optimized virtual orbital subspace for faster GW calculations in localized basis
,”
J. Chem. Phys.
145
,
234110
(
2016
).

Supplementary Material

You do not currently have access to this content.