Localized surface plasmon resonances (LSPRs) are gaining considerable attention due to the unique far-field and near-field optical properties and applications. Additionally, the Fermi energy, which is the chemical potential, of plasmonic nanoparticles is one of the key properties to control hot-electron and -hole transfer at the interface between plasmonic nanoparticles and a semiconductor. In this article, we tried to control the diffusion potential of the plasmonic system by manipulating the interface dipole. We fabricated solid-state photoelectric conversion devices in which gold nanoparticles (Au-NPs) are located between strontium titanate (SrTiO3) as an electron transfer material and nickel oxide (NiO) as a hole transport material. Lanthanum aluminate as an interface dipole layer was deposited on the atomic layer scale at the three-phase interface of Au-NPs, SrTiO3, and NiO, and the effect was investigated by photoelectric measurements. Importantly, the diffusion potential between the plasmonic metal and a semiconductor can be arbitrarily controlled by the averaged thickness and direction of the interface dipole layer. The insertion of an only one unit cell (uc) interface dipole layer, whose thickness was less than 0.5 nm, dramatically controlled the diffusion potential formed between the plasmonic nanoparticles and surrounding media. This is a new methodology to control the plasmonic potential without applying external stimuli, such as an applied potential or photoirradiation, and without changing the base materials. In particular, it is very beneficial for plasmonic devices in that the interface dipole has the ability not only to decrease but also to increase the open-circuit voltage on the order of several hundreds of millivolts.

1.
H.
Yu
,
Q.
Sun
,
K.
Ueno
,
T.
Oshikiri
,
A.
Kubo
,
Y.
Matsuo
, and
H.
Misawa
,
ACS Nano
10
,
10373
10381
(
2016
).
2.
J.
Yang
,
Q.
Sun
,
K.
Ueno
,
X.
Shi
,
T.
Oshikiri
,
H.
Misawa
, and
Q.
Gong
,
Nat. Commun.
9
,
4858
(
2018
).
3.
J. N.
Anker
,
W. P.
Hall
,
O.
Lyandres
,
N. C.
Shah
,
J.
Zhao
, and
R. P.
Van Duyne
,
Nat. Mater.
7
,
442
453
(
2008
).
4.
R. F.
Aroca
,
Phys. Chem. Chem. Phys.
15
,
5355
5363
(
2013
).
5.
F.
Neubrech
,
C.
Huck
,
K.
Weber
,
A.
Pucci
, and
H.
Giessen
,
Chem. Rev.
117
,
5110
5145
(
2017
).
6.
G.
Zhao
,
H.
Kozuka
, and
T.
Yoko
,
Thin Solid Films
277
,
147
154
(
1996
).
7.
P.
Reineck
,
G. P.
Lee
,
D.
Brick
,
M.
Karg
,
P.
Mulvaney
, and
U.
Bach
,
Adv. Mater.
24
,
4750
4755
(
2012
).
8.
K.
Ueno
,
T.
Oshikiri
,
Q.
Sun
,
X.
Shi
, and
H.
Misawa
,
Chem. Rev.
118
,
2955
2993
(
2018
).
9.
K.
Nakamura
,
T.
Oshikiri
,
K.
Ueno
,
Y.
Wang
,
Y.
Kamata
,
Y.
Kotake
, and
H.
Misawa
,
J. Phys. Chem. Lett.
7
,
1004
1009
(
2016
).
10.
K.
Nakamura
,
T.
Oshikiri
,
K.
Ueno
,
T.
Katase
,
H.
Ohta
, and
H.
Misawa
,
J. Phys. Chem. C
122
,
14064
14071
(
2018
).
11.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
921
(
2011
).
12.
T.
Oshikiri
,
K.
Ueno
, and
H.
Misawa
,
Angew. Chem., Int. Ed.
55
,
3942
3946
(
2016
).
13.
X.
Shi
,
K.
Ueno
,
T.
Oshikiri
,
Q.
Sun
,
K.
Sasaki
, and
H.
Misawa
,
Nat. Nanotechnol.
13
,
953
958
(
2018
).
14.
T.
Tatsuma
,
H.
Nishi
, and
T.
Ishida
,
Chem. Sci.
8
,
3325
3337
(
2017
).
15.
T.
Oshikiri
,
K.
Ueno
, and
H.
Misawa
,
Green Chem.
21
,
4443
4448
(
2019
).
16.
Y.
Cao
,
T.
Oshikiri
,
X.
Shi
,
K.
Ueno
,
J.
Li
, and
H.
Misawa
,
ChemNanoMat
5
,
1008
1014
(
2019
).
17.
C.
Novo
,
A. M.
Funston
,
A. K.
Gooding
, and
P.
Mulvaney
,
J. Am. Chem. Soc.
131
,
14664
14666
(
2009
).
18.
F.
Kato
,
H.
Minamimoto
,
F.
Nagasawa
,
Y. S.
Yamamoto
,
T.
Itoh
, and
K.
Murakoshi
,
ACS Photonics
5
,
788
796
(
2018
).
19.
M. T.
Sheldon
,
J.
van de Groep
,
A. M.
Brown
,
A.
Polman
, and
H. A.
Atwater
,
Science
346
,
828
831
(
2014
).
20.
J.
van de Groep
,
M. T.
Sheldon
,
H. A.
Atwater
, and
A.
Polman
,
Sci. Rep.
6
,
23283
(
2016
).
21.
T.
Yajima
,
Y.
Hikita
,
M.
Minohara
,
C.
Bell
,
J. A.
Mundy
,
L. F.
Kourkoutis
,
D. A.
Muller
,
H.
Kumigashira
,
M.
Oshima
, and
H. Y.
Hwang
,
Nat. Commun.
6
,
6759
(
2015
).
22.
T.
Yajima
,
Y.
Hikita
, and
H. Y.
Hwang
,
Nat. Mater.
10
,
198
201
(
2011
).
23.
T.
Yajima
,
M.
Minohara
,
C.
Bell
,
H.
Kumigashira
,
M.
Oshima
,
H. Y.
Hwang
, and
Y.
Hikita
,
Nano Lett.
15
,
1622
1626
(
2015
).
24.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature
427
,
423
426
(
2004
).
25.
M.
Kawasaki
,
K.
Takahashi
,
T.
Maeda
,
R.
Tsuchiya
,
M.
Shinohara
,
O.
Ishiyama
,
T.
Yonezawa
,
M.
Yoshimoto
, and
H.
Koinuma
,
Science
266
,
1540
1542
(
1994
).
26.
H.
Haick
,
M.
Ambrico
,
T.
Ligonzo
,
R. T.
Tung
, and
D.
Cahen
,
J. Am. Chem. Soc.
128
,
6854
6869
(
2006
).
27.
D.
Gilks
,
K. P.
McKenna
,
Z.
Nedelkoski
,
B.
Kuerbanjiang
,
K.
Matsuzaki
,
T.
Susaki
,
L.
Lari
,
D.
Kepaptsoglou
,
Q.
Ramasse
,
S.
Tear
, and
V. K.
Lazarov
,
Sci. Rep.
6
,
29724
(
2016
).
28.
C.
Sönnichsen
,
T.
Franzl
,
T.
Wilk
,
G.
von Plessen
,
J.
Feldmann
,
O.
Wilson
, and
P.
Mulvaney
,
Phys. Rev. Lett.
88
,
077402
(
2002
).
29.
J. S.
DuChene
,
G.
Tagliabue
,
A. J.
Welch
,
W. H.
Cheng
, and
H. A.
Atwater
,
Nano Lett.
18
,
2545
2550
(
2018
).
30.
J. G.
Liu
,
H.
Zhang
,
S.
Link
, and
P.
Nordlander
,
ACS Photonics
5
,
2584
2595
(
2017
).
31.
R.
Sundararaman
,
P.
Narang
,
A. S.
Jermyn
,
W. A.
Goddard
 III
, and
H. A.
Atwater
,
Nat. Commun.
5
,
5788
(
2014
).
32.
M.
Bernardi
,
J.
Mustafa
,
J. B.
Neaton
, and
S. G.
Louie
,
Nat. Commun.
6
,
7044
(
2015
).
33.
Y.
Nishijima
,
K.
Ueno
,
Y.
Kotake
,
K.
Murakoshi
,
H.
Inoue
, and
H.
Misawa
,
J. Phys. Chem. Lett.
3
,
1248
1252
(
2012
).
34.
J. B.
Priebe
,
M.
Karnahl
,
H.
Junge
,
M.
Beller
,
D.
Hollmann
, and
A.
Bruckner
,
Angew. Chem., Int. Ed.
52
,
11420
11424
(
2013
).
35.
R.
Chaleawpong
,
N.
Promros
,
P.
Charoenyuenyao
,
A.
Nopparuchikun
,
P.
Sittimart
,
T.
Nogami
, and
T.
Yoshitake
,
Phys. Status Solidi A
215
,
1701022
(
2018
).
36.
S. M.
Sze
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
California
,
2006
).

Supplementary Material

You do not currently have access to this content.