In this work, trimethoxyboroxine (TMB) is identified as a small-molecule glass former. In its viscous liquid as well as glassy states, static and dynamic properties of TMB are explored using various techniques. It is found that, on average, the structure of the condensed TMB molecules deviates from threefold symmetry so that TMB’s electric dipole moment is nonzero, thus rendering broadband dielectric spectroscopy applicable. This method reveals the super-Arrhenius dynamics that characterizes TMB above its glass transition, which occurs at about 204 K. To extend the temperature range in which the molecular dynamics can be studied, 11B nuclear magnetic resonance experiments are additionally carried out on rotating and stationary samples: Exploiting dynamic second-order shifts, spin-relaxation times, line shape effects, as well as stimulated-echo and two-dimensional exchange spectroscopy, a coherent picture regarding the dynamics of this glass former is gained.

1.
For reviews see e.g.,
H.
Eckert
, “
Structural characterization of noncrystalline solids and glasses using solid-state NMR
,”
Prog. Nucl. Magn. Reson. Spectrosc.
24
,
159
(
1992
);
G. N.
Greaves
and
S.
Sen
, “
Inorganic glasses, glass-forming liquids and amorphizing solids
,”
Adv. Phys.
56
,
1
(
2007
);
S.
Sen
, “
Dynamics in inorganic glass-forming liquids by NMR spectroscopy
,”
Prog. Nucl. Magn. Reson. Spectrosc.
(in press).
2.
J.
Wu
,
M.
Potuzak
, and
J. F.
Stebbins
, “
High-temperature in situ 11B NMR study of network dynamics in boron-containing glass-forming liquids
,”
J. Non-Cryst. Solids
357
,
3944
(
2011
).
3.
A. H.
Silver
and
P. J.
Bray
, “
Nuclear magnetic resonance absorption in glass. I. Nuclear quadrupole effects in boron oxide, soda-boric oxide, and borosilicate glasses
,”
J. Chem. Phys.
29
,
984
(
1958
).
4.
R. E.
Youngman
,
S. T.
Haubrich
,
J. W.
Zwanziger
,
M. T.
Janicke
, and
B. F.
Chmelka
, “
Short- and intermediate-range structural ordering in glassy boron oxide
,”
Science
269
,
1416
(
1995
).
5.
See e.g.,
H.
Maekawa
,
Y.
Inagaki
,
S.
Shimokawa
, and
T.
Yokokawa
, “
Dynamics of a glass-forming system: 11B NMR of B2O3
,”
J. Chem. Phys.
103
,
371
(
1995
), as well as Ref. 1 and references cited therein.
6.
J.
Krogh-Moe
, “
The structure of vitreous and liquid boron oxide
,”
J. Non-Cryst. Solids
1
,
269
(
1969
).
7.
J.
Schrooten
,
B.
Meyer
,
S. W.
Martin
, and
F.
Borsa
, “
Preparation and characterization of boron oxysulfide glasses
,”
J. Non-Cryst. Solids
319
,
136
(
2003
).
8.
L.
Yao
,
X.-Q.
Zeng
,
M.-F.
Ge
, and
D.-X.
Wang
, “
Experimental and theoretical studies on the electronic structure of trisubstituted boroxine
,”
J. Mol. Struct.
841
,
104
(
2007
).
9.
L.
Türker
,
S.
Gümüş
, and
T.
Atalar
, “
Structural and molecular orbital properties of some boroxine derivatives—A theoretical study
,”
Bull. Korean Chem. Soc.
30
,
2233
(
2009
).
10.
D.-Z.
Li
,
H.
Bai
,
Q.
Chen
,
H.
Lu
,
H.-J.
Zhai
, and
S.-D.
Li
, “
Perfectly planar boronyl boroxine D3h B6O6: A boron oxide analog of boroxine and benzene
,”
J. Chem. Phys.
138
,
244304
(
2013
).
11.
M. A.
Beckett
,
M. P.
Rugen-Hankey
, and
K. S.
Varma
, “
Trimethoxyboroxine as an ‘oxygen-transfer’ reagent: A non-aqueous ‘sol–gel’ route to alkali-free borosilicate glass
,”
Chem. Commun.
2000
,
1499
.
12.
M. C.
Haberecht
,
M.
Bolte
, and
M.
Wagner
, “
A new polymorph of tri(p-tolyl)boroxine
,”
J. Chem. Crystallogr.
35
,
657
(
2005
).
13.
J. C.
Burns
,
X.
Xia
, and
J. R.
Dahn
, “
The effect of trimethoxyboroxine on carbonaceous negative electrodes for Li-ion batteries
,”
J. Electrochem. Soc.
160
,
A383
(
2013
);
A. M.
Haregewoin
,
A. S.
Wotango
, and
B.-J.
Hwang
, “
Electrolyte additives for lithium ion battery electrodes: Progress and perspectives
,”
Energy Environ. Sci.
9
,
1955
(
2016
).
14.
E. L.
Gjersing
,
S.
Sen
, and
B. G.
Aitken
, “
Molecular dynamics in supercooled P-Se liquids near the glass transition: Results from 31P NMR spectroscopy
,”
J. Phys. Chem. B
115
,
2857
(
2011
).
15.
D. C.
Kaseman
,
O.
Gulbiten
,
B. G.
Aitken
, and
S.
Sen
, “
Isotropic rotation vs. shear relaxation in supercooled liquids with globular cage molecules
,”
J. Chem. Phys.
144
,
174501
(
2016
).
16.
E. L.
Gjersing
,
S.
Sen
,
P.
Yu
, and
B. G.
Aitken
, “
Anomalously large decoupling of rotational and shear relaxation in a molecular glass
,”
Phys. Rev. B
76
,
214202
(
2007
).
17.
A.
Loidl
and
R.
Böhmer
, “
Glass transitions and relaxation phenomena in orientational glasses and supercooled plastic crystals
,” in
Disorder Effects on Relaxational Processes
, edited by
R.
Richert
and
A.
Blumen
(
Springer
,
Berlin, Heidelberg
,
1994
), pp.
659
696
.
18.
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Relaxation dynamics in plastic crystals
,”
J. Chem. Phys.
116
,
10386
(
2002
).
19.
A.
Vispa
,
M.
Romanini
,
M. A.
Ramos
,
L. C.
Pardo
,
F. J.
Bermejo
,
M.
Hassaine
,
A. I.
Krivchikov
,
J. W.
Taylor
, and
J. L.
Tamarit
, “
Thermodynamic and kinetic fragility of freon 113: The most fragile plastic crystal
,”
Phys. Rev. Lett.
118
,
105701
(
2017
).
20.
E.
Kamińska
,
O.
Madejczyk
,
M.
Tarnacka
,
K.
Jurkiewicz
,
K.
Wolnica
,
W. E.
Śmiszek-Lindert
,
K.
Kamiński
, and
M.
Paluch
, “
Anhydrosaccharides—A new class of the fragile plastic crystals
,”
J. Chem. Phys.
148
,
074501
(
2018
).
21.
R.
Maxwell
and
H.
Eckert
, “
Chemical equilibria in glass-forming melts. High-temperature31P and77Se NMR of the phosphorus-selenium system
,”
J. Am. Chem. Soc.
116
,
682
(
1994
);
R.
Maxwell
and
H.
Eckert
, “
Speciation equilibria, clustering, and chemical-exchange kinetics in non-oxide glasses and melts. High-temperature 31P NMR study of the system phosphorus-selenium
,”
J. Am. Chem. Soc.
115
,
4747
(
1993
).
22.
D.
Georgiev
,
M.
Mitkova
,
P.
Boolchand
,
G.
Brunklaus
,
H.
Eckert
, and
M.
Micoulaut
, “
Molecular structure, glass transition temperature variation, agglomeration theory, and network connectivity of binary P-Se glasses
,”
Phys. Rev. B
64
,
134204
(
2001
).
23.
B. G.
Aitken
, “
GeAs sulfide glasses with unusually low network connectivity
,”
J. Non-Cryst. Solids
345-346
,
1
(
2004
).
24.
S.
Benkhof
,
A.
Kudlik
,
T.
Blochowicz
, and
E.
Rössler
, “
Two glass transitions in ethanol: A comparative dielectric relaxation study of the supercooled liquid and the plastic crystal
,”
J. Phys.: Condens. Matter
10
,
8155
(
1998
);
M. A.
Miller
,
M.
Jimenez-Ruiz
,
F. J.
Bermejo
, and
N. O.
Birge
, “
Comparison of the structural and orientational glass-transition dynamics in ethanol
,”
Phys. Rev. B
57
,
R13977
(
1998
).
25.
See e.g.,
O.
Haida
,
H.
Suga
, and
S.
Seki
, “
Calorimetric study of the glassy state. XI. Plural glass transition phenomena of cyclohexene
,”
J. Chem. Thermodyn.
9
,
1133
(
1977
);
H.
Fujimori
and
M.
Oguni
, “
Construction of an adiabatic calorimeter at low temperatures and glass transition of crystalline 2-bromothiophene
,”
J. Phys. Chem. Solids
54
,
271
(
1993
);
H.
Fujimori
,
M.
Mizukami
, and
M.
Oguni
, “
Calorimetric study of 1,3-diphenyl-1,1,3,3-tetramethyldisiloxane: Emergence of α-, β-, and crystalline-glass transitions
,”
J. Non-Cryst. Solids
204
,
38
45
(
1996
);
M.
Götz
,
T.
Bauer
,
P.
Lunkenheimer
, and
A.
Loidl
, “
Supercooled-liquid and plastic-crystalline state in succinonitrile-glutaronitrile mixtures
,”
J. Chem. Phys.
140
,
094504
(
2014
).
[PubMed]
26.
M.
Oguni
,
T.
Matsuo
,
H.
Suga
, and
S.
Seki
, “
Calorimetric study of glassy state. XIII. Thermodynamic properties of normal and deuterated orthoboric acid crystals
,”
Bull. Chem. Soc. Jpn.
50
,
825
(
1977
).
27.
G.
Wu
, “
17O NMR studies of organic and biological molecules in aqueous solution and in the solid state
,”
Prog. Nucl. Magn. Reson. Spectrosc.
114-115
,
135
(
2019
).
28.
M.
Adjei-Acheamfour
,
M.
Storek
, and
R.
Böhmer
, “
Communication: Heterogeneous water dynamics on a clathrate hydrate lattice detected by multidimensional oxygen nuclear magnetic resonance
,”
J. Chem. Phys.
146
,
181101
(
2017
).
29.
J.
Beerwerth
,
M.
Storek
,
D.
Greim
,
J.
Lueg
,
R.
Siegel
,
B.
Cetinkaya
,
W.
Hiller
,
H.
Zimmermann
,
J.
Senker
, and
R.
Böhmer
, “
Two-site jumps in dimethyl sulfone studied by one- and two-dimensional 17O-NMR spectroscopy
,”
J. Magn. Reson. B
288
,
84
94
(
2018
).
30.
J.
Beerwerth
,
S. P.
Bierwirth
,
J.
Adam
,
C.
Gainaru
, and
R.
Böhmer
, “
Local and global dynamics of the viscous ion conductors 2Ca(NO3)2-3KNO3 and 2Ca(NO3)2-3RbNO3 probed by 87Rb nuclear magnetic resonance and shear rheology
,”
J. Chem. Phys.
150
,
194503
(
2019
).
31.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.
220
,
567
(
2005
).
32.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
33.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2012
);
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
), see also the information given at https://orcaforum.kofo.mpg.de.
34.
A. L.
Hickey
and
C. N.
Rowley
, “
Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities
,”
J. Phys. Chem. A
118
,
3678
(
2014
).
35.
M. A.
Ring
and
W. S.
Koski
, “
11B quadrupole coupling constants in trimethoxyboroxine and N-trimethylborazole
,”
J. Chem. Phys.
35
,
381
(
1961
).
36.
S.
Sen
, “
Density functional theory calculations of 11B NMR parameters in crystalline borates
,”
Mol. Simul.
34
,
1115
(
2008
), gives CQ values in the 2.5 to 3 MHz range.
37.
J. W.
Zwanziger
, “
The NMR response of boroxol rings: A density functional theory study
,”
Solid State Nucl. Magn. Reson.
27
,
5
(
2005
).
38.
S.
Sturniolo
,
T. F. G.
Green
,
R. M.
Hanson
,
M.
Zilka
,
K.
Refson
,
P.
Hodgkinson
,
S. P.
Brown
, and
J. R.
Yates
, “
Visualization and processing of computed solid-state NMR parameters: MagresView and MagresPython
,”
Solid State Nucl. Magn. Reson.
78
,
64
(
2016
).
39.
A. I.
Nielsen
,
T.
Christensen
,
B.
Jakobsen
,
K.
Niss
,
N. B.
Olsen
,
R.
Richert
, and
J. C.
Dyre
, “
Prevalence of approximate √t relaxation for the dielectric α process in viscous organic liquids
,”
J. Chem. Phys.
130
,
154508
(
2009
).
40.
T.
El Goresy
and
R.
Böhmer
, “
Diluting the hydrogen bonds in mixtures ofn-butanol withn-bromobutane: A dielectric study
,”
J. Chem. Phys.
128
,
154520
(
2008
);
[PubMed]
R.
Böhmer
,
C.
Gainaru
, and
R.
Richert
, “
Structure and dynamics of monohydroxy alcohols—Milestones towards their microscopic understanding, 100 years after Debye
,”
Phys. Rep.
545
,
125
(
2014
).
41.
Broadband Dielectric Spectroscopy
, edited by
F.
Kremer
and
A.
Schönhals
(
Springer
,
Berlin
,
2003
).
42.

Here, we used a density of ρ = 1.216 g/cm3.

43.

For the simulation, we use the procedure described in detail in Ref. 29. To implement the rotation about the magic angle, the rotation angle (conventionally called γ) was incremented in steps of 2π/400. In the presence of fast dynamics, this discretization was not always sufficient; hence, an incrementation of at least 10/(νrotτ) was chosen.

44.
A.
Samoson
, “
Satellite transition high-resolution NMR of quadrupolar nuclei in powders
,”
Chem. Phys. Lett.
119
,
29
(
1985
).
45.
K.
Müller
, “
Spin relaxation in isolated and coupled non-integer quadrupolar nuclei: Theory and application for I = 3/2 nuclei
,”
Phys. Chem. Chem. Phys.
4
,
5515
(
2002
).
46.

Please note that a fast rotation of TMB about its threefold molecular axis would lead to an MAS spectrum characterized by an effective asymmetry parameter ηQ = 0 and to an inferior fit to the experimental 210 K spectrum in Fig. 4. For nonrotating samples, the deviations between experimental low-temperature spectra and those calculated for an effective ηQ = 0 (as well as ηCS = 0) would be particularly pronounced.

47.
M.
Adjei-Acheamfour
,
M.
Storek
,
J.
Beerwerth
, and
R.
Böhmer
, “
Two-dimensional second-order quadrupolar exchange powder spectra for nuclei with half-integer spins. Calculations and an experimental example using oxygen NMR
,”
Solid State Nucl. Magn. Reson.
71
,
96
(
2015
).
48.
M.
Adjei-Acheamfour
and
R.
Böhmer
, “
Second-order quadrupole interaction based detection of ultra-slow motions: Tensor operator framework for central-transition spectroscopy and the dynamics in hexagonal ice as an experimental example
,”
J. Magn. Reson.
249
,
141
(
2014
).
49.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic Press
,
London
,
1994
).
50.

To acquire the two-dimensional spectra, a five-pulse sequence with echo delays of 10 μs (first delay) or 20 μs (second delay) was employed. We collected 229 × 8192 data points (for tm = 10 ms) or 134 × 8192 points (for tm = 0.1 ms) and coadded 128 scans. The t1 increment was 2 µs, and the t2 increment was 32 µs. After symmetrization and zero filling to 1024 × 16 384 points, a Gaussian apodization of 200 Hz was applied.

51.
P. S.
Hubbard
, “
Nonexponential nuclear magnetic relaxation by quadrupole interactions
,”
J. Chem. Phys.
53
,
985
(
1970
).
52.
A.
Baram
,
Z.
Luz
, and
S.
Alexander
, “
Resonance line shapes for semi-integer spins in liquids
,”
J. Chem. Phys.
58
,
4558
(
1973
).
53.
D.
Petit
and
J.-P.
Korb
, “
Fictitious spin-1/2 operators and multitransition nuclear relaxation in solids: General theory
,”
Phys. Rev. B
37
,
5761
(
1988
).
54.
H.
Schneider
and
H.
Schmiedel
, “
Kernmagnetische Relaxation von Zweispinsystemen fast gleicher Kerne. 1
,”
Ann. Phys.
483
,
346
(
1973
).
55.
L.
Werbelow
, “
Adiabatic nuclear magnetic resonance line width contributions for central transitions of I > 1/2 nuclei
,”
J. Chem. Phys.
104
,
3457
(
1996
).
56.
M.
Witschas
and
H.
Eckert
, “
31P and 23Na solid-state NMR studies of cation dynamics in HT-sodium orthophosphate and the solid solutions (Na2SO4)x–(Na3PO4)1−x
,”
J. Phys. Chem. A
103
,
10764
(
1999
).
57.
S. H.
Chung
,
K. R.
Jeffrey
, and
J. R.
Stevens
, “
Dynamics of sodium ions in NaClO4 complexed in poly(propylene-oxide): A 23Na nuclear magnetic resonance study
,”
J. Chem. Phys.
108
,
3360
(
1998
).
58.
See e.g.,
P. A.
Beckmann
, “
Spectral densities and nuclear spin relaxation in solids
,”
Phys. Rep.
171
,
85
(
1988
).
59.

Explicit expressions also for homonuclear and heteronuclear dipolar dynamic shifts are given in Ref. 53. Note, however, that different from Eq. (12a) and the corresponding expressions, e.g., in Refs. 51 and 55, in Ref. 53 the spectral densities Q(ω) and Q(2ω) appearing in νc(2) carry the same sign.

60.
C.
Fouques
and
L.
Werbelow
, “
Nuclear magnetic resonance reorientational correlation functions: The odd-valued spectral components
,”
Can. J. Chem.
57
,
2329
(
1979
).
61.

This statement does not only apply to the quadrupolarly related shifts, but, according to the references cited in Ref. 53, also in the presence of a dipolar modulation between like or unlike spins which “does not split the line but shifts it.”

62.
D.
Petit
,
J.-P.
Korb
,
A.
Delville
,
J.
Grandjean
, and
P.
Laszlo
, “
Theory of nuclear spin relaxation in heterogeneous media and application to the cross correlation between quadrupolar and dipolar fluctuations of deuterons in clay gels
,”
J. Magn. Reson.
96
,
252
(
1992
).
63.
E. R.
Andrew
and
D. P.
Tunstall
, “
Spin-lattice relaxation in imperfect cubic crystals and in non-cubic crystals
,”
Proc. Phys. Soc., London
78
,
1
(
1961
).
64.

Transverse relaxation is close to exponential for T > 240 K. At lower temperatures, the relaxation is more compressed, i.e., of the form in Eq. (15) with an exponent between 1 and 2, indicating that dipole-dipole interactions impact on the transverse relaxation.

65.
W.
Schnauss
,
F.
Fujara
,
K.
Hartmann
, and
H.
Sillescu
, “
Nonexponential 2H spin-lattice relaxation as a signature of the glassy state
,”
Chem. Phys. Lett.
166
,
381
(
1990
).
66.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
E.
Rössler
, “
Dynamics of supercooled liquids and glassy solids
,”
Prog. Nucl. Magn. Reson. Spectrosc.
39
,
191
(
2001
).
67.
M.
Vogel
and
E.
Rössler
, “
Effects of various types of molecular dynamics on 1D and 2D 2H NMR studied by random walk simulations
,”
J. Magn. Chem. A
147
,
43
(
2000
).
68.
R.
Böhmer
,
K. R.
Jeffrey
, and
M.
Vogel
, “
Solid-state lithium NMR with applications to the translational dynamics in ion conductors
,”
Prog. Nucl. Magn. Reson. Spectrosc.
50
,
87
(
2007
).
69.
R.
Böhmer
and
C. A.
Angell
, “
Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids
,”
Phys. Rev. B
45
,
10091
(
1992
).
70.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
, “
Non-exponential relaxations in strong and fragile glass-formers
,”
J. Chem. Phys.
99
,
4201
(
1993
).
71.
A.
Kudlik
,
S.
Benkhof
,
T.
Blochowicz
,
C.
Tschirwitz
, and
E.
Rössler
, “
The dielectric response of simple organic glass formers
,”
J. Mol. Struct.
479
,
201
(
1999
).
72.

From Fig. S10 of Ref. 47, it is seen that with flip angles of about 24° and ηQ ≈ 0.32 almost diagonal 2D spectra are obtained. In other words, for TMB, line shape changes corresponding to a methoxy flip are not easy to detect.

73.
D.
Freude
,
J.
Haase
,
J.
Klinowski
,
T. A.
Carpenter
, and
G.
Ronikier
, “
NMR line shifts caused by the second-order quadrupolar interaction
,”
Chem. Phys. Lett.
119
,
365
(
1985
).
74.
J.
Tillmann
,
H.-W.
Lerner
,
T.
Sinke
, and
M.
Bolte
, “
Analysis of geometric parameters and packing considerations for triphenylboroxine derivatives, with tris(pentafluorophenyl) boroxine as an example
,”
Acta Cryst. C
68
,
o204
(
2012
).
75.
C.
Gainaru
,
R.
Meier
,
S.
Schildmann
,
C.
Lederle
,
W.
Hiller
,
E. A.
Rössler
, and
R.
Böhmer
, “
Nuclear-magnetic-resonance measurements reveal the origin of the Debye process in monohydroxy alcohols
,”
Phys. Rev. Lett.
105
,
258303
(
2010
).

Supplementary Material

You do not currently have access to this content.