Strong coupling of quantum emitters with confined electromagnetic modes of nanophotonic structures may be used to change optical, chemical, and transport properties of materials, with significant theoretical effort invested toward a better understanding of this phenomenon. However, a full theoretical description of both matter and light is an extremely challenging task. Typical theoretical approaches simplify the description of the photonic environment by describing it as a single mode or few modes. While this approximation is accurate in some cases, it breaks down strongly in complex environments, such as within plasmonic nanocavities, and the electromagnetic environment must be fully taken into account. This requires the quantum description of a continuum of bosonic modes, a problem that is computationally hard. We here investigate a compromise where the quantum character of light is taken into account at modest computational cost. To do so, we focus on a quantum emitter that interacts with an arbitrary photonic spectral density and employ the cumulant, or cluster, expansion method to the Heisenberg equations of motion up to first, second, and third order. We benchmark the method by comparing it with exact solutions for specific situations and show that it can accurately represent dynamics for many parameter ranges.

1.
E. M.
Purcell
, “
Spontaneous emission probabilities at radio frequencies
,”
Phys. Rev.
69
,
681
(
1946
).
2.
Y.
Kaluzny
,
P.
Goy
,
M.
Gross
,
J.
Raimond
, and
S.
Haroche
, “
Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity: The ringing regime of superradiance
,”
Phys. Rev. Lett.
51
,
1175
(
1983
).
3.
R. J.
Thompson
,
G.
Rempe
, and
H. J.
Kimble
, “
Observation of normal-mode splitting for an atom in an optical cavity
,”
Phys. Rev. Lett.
68
,
1132
(
1992
).
4.
C.
Weisbuch
,
M.
Nishioka
,
A.
Ishikawa
, and
Y.
Arakawa
, “
Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity
,”
Phys. Rev. Lett.
69
,
3314
(
1992
).
5.
D. G.
Lidzey
,
D. D. C.
Bradley
,
M. S.
Skolnick
,
T.
Virgili
,
S.
Walker
, and
D. M.
Whittaker
, “
Strong exciton-photon coupling in an organic semiconductor microcavity
,”
Nature
395
,
53
(
1998
).
6.
J.
Bellessa
,
C.
Bonnand
,
J. C.
Plenet
, and
J.
Mugnier
, “
Strong coupling between surface plasmons and excitons in an organic semiconductor
,”
Phys. Rev. Lett.
93
,
036404
(
2004
).
7.
J.
Dintinger
,
S.
Klein
,
F.
Bustos
,
W. L.
Barnes
, and
T. W.
Ebbesen
, “
Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays
,”
Phys. Rev. B
71
,
035424
(
2005
).
8.
S. R. K.
Rodriguez
,
J.
Feist
,
M. A.
Verschuuren
,
F. J.
García Vidal
, and
J.
Gómez Rivas
, “
Thermalization and cooling of plasmon-exciton polaritons: Towards quantum condensation
,”
Phys. Rev. Lett.
111
,
166802
(
2013
).
9.
G.
Zengin
,
M.
Wersäll
,
S.
Nilsson
,
T. J.
Antosiewicz
,
M.
Käll
, and
T.
Shegai
, “
Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions
,”
Phys. Rev. Lett.
114
,
157401
(
2015
).
10.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
(
2016
).
11.
R.-Q.
Li
,
D.
Hernángomez-Pérez
,
F. J.
García-Vidal
, and
A. I.
Fernández-Domínguez
, “
Transformation optics approach to plasmon-exciton strong coupling in nanocavities
,”
Phys. Rev. Lett.
117
,
107401
(
2016
).
12.
B.
Gurlek
,
V.
Sandoghdar
, and
D.
Martín-Cano
, “
Manipulation of quenching in nanoantenna–emitter systems enabled by external detuned cavities: A path to enhance strong-coupling
,”
ACS Photonics
5
,
456
(
2018
).
13.
S.
Franke
,
S.
Hughes
,
M.
Kamandar Dezfouli
,
P. T.
Kristensen
,
K.
Busch
,
A.
Knorr
, and
M.
Richter
, “
Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics
,”
Phys. Rev. Lett.
122
,
213901
(
2019
).
14.
A.
Bisht
,
J.
Cuadra
,
M.
Wersäll
,
A.
Canales
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems
,”
Nano Lett.
19
,
189
(
2019
).
15.
C.
Cohen-Tannoudji
,
J.
Roc
, and
G.
Grynberg
,
Photons and Atoms: Introduction to Quantum Electrodynamics
(
Wiley-Interscience
,
New York
,
1987
).
16.
I. I.
Rabi
, “
Space quantization in a gyrating magnetic field
,”
Phys. Rev.
51
,
652
(
1937
).
17.
R.
Dicke
, “
Coherence in spontaneous radiation processes
,”
Phys. Rev.
93
,
99
(
1954
).
18.
E. T.
Jaynes
and
F. W.
Cummings
, “
Comparison of quantum and semiclassical radiation theories with application to the beam maser
,”
Proc. IEEE
51
,
89
(
1963
).
19.
M.
Tavis
and
F. W.
Cummings
, “
Exact solution for an N-Molecule-Radiation-Field Hamiltonian
,”
Phys. Rev.
170
,
379
(
1968
).
20.
H. J.
Carmichael
,
Statistical Methods in Quantum Optics 1
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
1999
).
21.
C. W.
Gardiner
and
P.
Zoller
,
Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics
(
Springer Berlin Heidelberg
,
2004
).
22.
G.
Grynberg
,
A.
Aspect
,
C.
Fabre
, and
C.
Cohen-Tannoudji
,
Introduction to Quantum Optics: From the Semi-Classical Approach to Quantized Light
(
Cambridge University Press
,
Cambridge
,
2010
).
23.
B. M.
Garraway
, “
The Dicke model in quantum optics: Dicke model revisited
,”
Philos. Trans. R. Soc. A
369
,
1137
(
2011
).
24.
A.
Frisk Kockum
,
A.
Miranowicz
,
S. D.
Liberato
,
S.
Savasta
, and
F.
Nori
, “
Ultrastrong coupling between light and matter
,”
Nat. Rev. Phys.
1
,
19
(
2019
).
25.
A.
Pusch
,
S.
Wuestner
,
J. M.
Hamm
,
K. L.
Tsakmakidis
, and
O.
Hess
, “
Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch Langevin approach
,”
ACS Nano
6
,
2420
(
2012
).
26.
M.
Sukharev
and
A.
Nitzan
, “
Optics of exciton-plasmon nanomaterials
,”
J. Phys.: Condens. Matter
29
,
443003
(
2017
).
27.
H.-T.
Chen
,
T. E.
Li
,
M.
Sukharev
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Ehrenfest+R dynamics. I. A mixed quantum–classical electrodynamics simulation of spontaneous emission
,”
J. Chem. Phys.
150
,
044102
(
2019
).
28.
H.-T.
Chen
,
T. E.
Li
,
M.
Sukharev
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Ehrenfest+R dynamics. II. A semiclassical QED framework for Raman scattering
,”
J. Chem. Phys.
150
,
044103
(
2019
).
29.
N. M.
Hoffmann
,
C.
Schäfer
,
A.
Rubio
,
A.
Kelly
, and
H.
Appel
, “
Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multitrajectory Ehrenfest dynamics
,”
Phys. Rev. A
99
,
063819
(
2019
).
30.
A.
Trügler
and
U.
Hohenester
, “
Strong coupling between a metallic nanoparticle and a single molecule
,”
Phys. Rev. B
77
,
115403
(
2008
).
31.
E.
Waks
and
D.
Sridharan
, “
Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter
,”
Phys. Rev. A
82
,
043845
(
2010
).
32.
B.
Huttner
and
S. M.
Barnett
, “
Quantization of the electromagnetic field in dielectrics
,”
Phys. Rev. A
46
,
4306
(
1992
).
33.
S.
Scheel
,
L.
Knöll
, and
D.-G.
Welsch
, “
QED commutation relations for inhomogeneous Kramers-Kronig dielectrics
,”
Phys. Rev. A
58
,
700
(
1998
).
34.
S.
Scheel
and
S. Y.
Buhmann
, “
Macroscopic quantum electrodynamics—Concepts and applications
,”
Acta Phys. Slovaca
58
,
675
(
2008
).
35.
S. Y.
Buhmann
,
Dispersion Forces I
, Springer Tracts in Modern Physics Vol. 247 (
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
).
36.
H. T.
Dung
,
L.
Knöll
, and
D.-G.
Welsch
, “
Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics
,”
Phys. Rev. A
57
,
3931
(
1998
).
37.
M.
Wubs
,
L. G.
Suttorp
, and
A.
Lagendijk
, “
Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics
,”
Phys. Rev. A
70
,
053823
(
2004
).
38.
S. Y.
Buhmann
,
Dispersion Forces II
, Springer Tracts in Modern Physics Vol. 248 (
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
).
39.
A.
Delga
,
J.
Feist
,
J.
Bravo-Abad
, and
F. J.
Garcia-Vidal
, “
Quantum emitters near a metal nanoparticle: Strong coupling and quenching
,”
Phys. Rev. Lett.
112
,
253601
(
2014
).
40.
S. Y.
Buhmann
and
D.-G.
Welsch
, “
Casimir-Polder forces on excited atoms in the strong atom-field coupling regime
,”
Phys. Rev. A
77
,
012110
(
2008
).
41.
T.
Hümmer
,
F. J.
García-Vidal
,
L.
Martín-Moreno
, and
D.
Zueco
, “
Weak and strong coupling regimes in plasmonic QED
,”
Phys. Rev. B
87
,
115419
(
2013
).
42.
B.
Rousseaux
,
D.
Dzsotjan
,
G.
Colas des Francs
,
H. R.
Jauslin
,
C.
Couteau
, and
S.
Guérin
, “
Adiabatic passage mediated by plasmons: A route towards a decoherence-free quantum plasmonic platform
,”
Phys. Rev. B
93
,
045422
(
2016
).
43.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2012
).
44.
A.
González-Tudela
,
P. A.
Huidobro
,
L.
Martín-Moreno
,
C.
Tejedor
, and
F. J.
García-Vidal
, “
Reversible dynamics of single quantum emitters near metal-dielectric interfaces
,”
Phys. Rev. B
89
,
041402(R)
(
2014
).
45.
A.
Cuartero-González
and
A. I.
Fernández-Domínguez
, “
Light-forbidden transitions in plasmon-emitter interactions beyond the weak coupling regime
,”
ACS Photonics
5
,
3415
(
2018
).
46.
I.
de Vega
and
D.
Alonso
, “
Dynamics of non-Markovian open quantum systems
,”
Rev. Mod. Phys.
89
,
015001
(
2017
).
47.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
(
2011
).
48.
F. A. Y. N.
Schröder
,
D. H. P.
Turban
,
A. J.
Musser
,
N. D. M.
Hine
, and
A. W.
Chin
, “
Tensor network simulation of multi-environmental open quantum dynamics via machine learning and entanglement renormalisation
,”
Nat. Commun.
10
,
1062
(
2019
).
49.
Y.
Tanimura
, “
Nonperturbative expansion method for a quantum system coupled to a harmonic-oscillator bath
,”
Phys. Rev. A
41
,
6676
(
1990
).
50.
A. W.
Chin
,
Á.
Rivas
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials
,”
J. Math. Phys.
51
,
092109
(
2010
).
51.
J.
del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of polaron-polaritons in organic microcavities
,”
Phys. Rev. B
98
,
165416
(
2018
).
52.
J.
del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of non-Markovian dynamics in organic polaritons
,”
Phys. Rev. Lett.
121
,
227401
(
2018
).
53.
R.
Kubo
, “
Generalized cumulant expansion method
,”
J. Phys. Soc. Jpn.
17
,
1100
(
1962
).
54.
M.
Kira
and
S. W.
Koch
, “
Cluster-expansion representation in quantum optics
,”
Phys. Rev. A
78
,
022102
(
2008
).
55.
M.
Kira
and
S. W.
Koch
,
Semiconductor Quantum Optics
(
Cambridge University Press
,
Cambridge
,
2011
).
56.
K.
Henschel
,
J.
Majer
,
J.
Schmiedmayer
, and
H.
Ritsch
, “
Cavity QED with an ultracold ensemble on a chip: Prospects for strong magnetic coupling at finite temperatures
,”
Phys. Rev. A
82
,
033810
(
2010
).
57.
P.
Kirton
and
J.
Keeling
, “
Superradiant and lasing states in driven-dissipative Dicke models
,”
New J. Phys.
20
,
015009
(
2018
).
58.
N. M.
Hoffmann
,
C.
Schäfer
,
N.
Säkkinen
,
A.
Rubio
,
H.
Appel
, and
A.
Kelly
, “
Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference
,”
J. Chem. Phys.
151
(
24
),
244113
(
2019
).
59.
M.
Zens
,
D. O.
Krimer
, and
S.
Rotter
, “
Critical phenomena and nonlinear dynamics in a spin ensemble strongly coupled to a cavity. II. Semiclassical-to-Quantum boundary
,”
Phys. Rev. A
100
,
013856
(
2019
).
60.
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Chain representations of open quantum systems and their numerical simulation with time-adaptive density matrix renormalisation group methods
,” in
Semiconductors and Semimetals
(
Elsevier, Inc.
,
2011
), Vol. 85, p.
115
.
61.

In principle, this is not the ground state of the full system, as we include counter-rotating terms in the light-matter coupling, and thus ultrastrong-coupling effects such as ground-state modifications.24 For the cases we treat below, the error due to this approximation is negligible.

63.
J.
Bezanson
,
A.
Edelman
,
S.
Karpinski
, and
V. B.
Shah
, “
Julia: A fresh approach to numerical computing
,”
SIAM Rev.
59
,
65
(
2017
).
64.
C.
Rackauckas
and
Q.
Nie
, “
DifferentialEquations.Jl—A performant and feature-rich ecosystem for solving differential equations in Julia
,”
J. Open Res. Software
5
,
15
(
2017
).
65.
D. A.
Steck
,
Quantum and Atom Optics
(unpublished), available at http://steck.us/teaching.
66.
V.
Weisskopf
and
E.
Wigner
, “
Über die natürliche linienbreite in der strahlung des harmonischen oszillators
,”
Z. Phys. Hadrons Nucl.
65
,
18
(
1930
).
67.
J.
Andreasen
and
H.
Cao
, “
Finite-difference time-domain formulation of stochastic noise in macroscopic atomic systems
,”
J. Lightwave Technol.
27
,
4530
(
2009
).
68.
P.
Törmä
and
W. L.
Barnes
, “
Strong coupling between surface plasmon polaritons and emitters: A review
,”
Rep. Prog. Phys.
78
,
013901
(
2015
).
69.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Dover
,
New York
,
1987
).
70.
J.
Cuerda
,
F. J.
García-Vidal
, and
J.
Bravo-Abad
, “
Spatio-temporal modeling of lasing action in core-shell metallic nanoparticles
,”
ACS Photonics
3
,
1952
(
2016
).
71.
J.
Cuerda
,
F.
Rüting
,
F. J.
García-Vidal
, and
J.
Bravo-Abad
, “
Theory of lasing action in plasmonic crystals
,”
Phys. Rev. B
91
,
041118(R)
(
2015
).
72.
D. M.
Coles
,
N.
Somaschi
,
P.
Michetti
,
C.
Clark
,
P. G.
Lagoudakis
,
P. G.
Savvidis
, and
D. G.
Lidzey
, “
Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity
,”
Nat. Mater.
13
,
712
(
2014
).
73.
P.
Kirton
and
J.
Keeling
, “
Suppressing and restoring the Dicke superradiance transition by dephasing and decay
,”
Phys. Rev. Lett.
118
,
123602
(
2017
).
You do not currently have access to this content.