We discuss the effect of molecular symmetry on coherent tunneling in symmetric double-well potentials whose two molecular equilibrium configurations are interconverted by nuclear permutations. This is illustrated with vibrational tunneling in ammonia molecules, electronic tunneling in the dihydrogen cation, and laser-induced rotational tunneling of homonuclear diatomics. In this contribution, we reexamine the textbook picture of coherent tunneling in such potentials, which is depicted with a wavepacket shuttling back and forth between the two potential-wells. We show that the common application of this picture to the aforementioned molecules contravenes the principle of the indistinguishability of identical particles. This conflict originates from the sole consideration of the dynamics of the tunneling-mode, connecting the double-well energy minima, and complete omission of all the remaining molecular degrees of freedom. This gives rise to double-well wavepackets that are nonsymmetric under nuclear permutations. To obey quantum statistics, we show that the double-well eigenstates composing these wavepackets must be entangled with the wavefunctions that describe all the omitted molecular modes. These wavefunctions have compensating and opposite nuclear permutation symmetry. This in turn leads to complete quenching of interference effects behind localization in one potential-well or another. Indeed, we demonstrate that the reduced density of probability of the symmetrized molecular wavefunction, where all the molecular coordinates but the tunneling-mode are integrated out, is symmetrically distributed over the two potential-wells, at all times. This applies to any multilevel wavepacket of isotropic or fully aligned symmetric double-well achiral molecules. However, in the case of coherent electronic or vibrational tunneling, fully aligned molecules may exhibit dynamical localization in the space-fixed frame, where the tunneling-mode density shuttles between the opposite directions of the alignment axis. This dynamical spatial-localization results from linear combinations of molecular states that have opposite parity. In summary, this study shows that dynamical localization of the tunneling-mode density on either of the two indistinguishable molecular equilibrium configurations of symmetric double-well achiral molecules is forbidden by quantum statistics, whereas its dynamical localization in the space-fixed frame is allowed by parity. The subtle distinction between these two types of localization has far-reaching implications in the interpretation of many ultrafast molecular dynamics experiments.

1.
Y.
Aharonov
and
D.
Rohrich
,
Quantum Paradoxes
(
Wiley-VCH
,
Weinheim
,
2005
).
2.
E.
Schrödinger
,
Phys. Rev.
28
,
1049
(
1926
).
3.
E.
Merzbacher
,
Phys. Today
55
(
8
),
44
(
2002
).
6.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
7.
J. R.
Oppenheimer
,
Phys. Rev.
31
,
66
(
1928
).
9.
R. W.
Gurney
and
E. U.
Condon
,
Phys. Rev.
33
,
127
(
1929
).
11.
I.
Giaever
,
Phys. Rev. Lett.
5
,
147
(
1960
).
12.
L. L.
Chang
and
L.
Esaki
,
Appl. Phys. Lett.
31
,
687
(
1977
).
13.
G.
Binnig
and
H.
Rohrer
,
IBM J. Res. Dev.
30
,
355
(
1986
).
14.
15.
P. W.
Anderson
and
J. M.
Rowell
,
Phys. Rev. Lett.
10
,
230
(
1963
).
16.
L. A.
MacColl
,
Phys. Rev.
40
,
621
(
1932
).
17.
E. H.
Hauge
and
J. A.
Støvneng
,
Rev. Mod. Phys.
61
,
917
(
1989
).
18.
R.
Landauer
and
T.
Martin
,
Rev. Mod. Phys.
66
,
217
(
1994
).
19.
G. G.
Paulus
,
F.
Zacher
,
H.
Walther
,
A.
Lohr
,
W.
Becker
, and
M.
Kleber
,
Phys. Rev. Lett.
80
,
484
(
1998
).
20.
M.
Uiberacker
 et al.,
Nature
446
,
627
(
2007
).
21.
22.
L.
Torlina
 et al.,
Nat. Phys.
11
,
503
(
2015
).
23.
R.
Feynmann
,
The Feynmann Lectures on Pysics
(
Addison-Wesley
,
Boston
,
1964
).
24.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloë
,
Quantum Mechanics
(
Wiley-VCH
,
Weinheim
,
1977
).
25.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley
,
Boston
,
1995
).
26.
B.
Friedrich
and
D.
Herschbach
,
J. Phys. Chem.
99
,
15686
(
1995
).
27.
B.
Friedrich
and
D.
Herschbach
,
Z. Phys. D: At., Mol. Clusters
36
,
221
228
(
1996
).
28.
C.
Neidel
 et al.,
Phys. Rev. Lett.
111
,
033001
(
2013
).
29.
A. V.
Davis
,
R.
Wester
,
A. E.
Bragg
, and
D. M.
Neumark
,
J. Chem. Phys.
118
,
999
(
2003
).
30.
M. F.
Kling
 et al.,
Science
312
,
246
(
2006
).
31.
G.
Sansone
 et al.,
Nature
465
,
763
(
2010
).
32.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
Ottawa
,
1998
).
33.
P. R.
Bunker
and
P.
Jensen
,
Fundamentals of Molecular Symmetry
(
IOP Publishing Ltd.
,
Bristol
,
2005
).
34.
P. R.
Bunker
and
P.
Jensen
, “
Spectroscopy and broken symmetry
,” in
Frontiers of Molecular Spectroscopy
, edited by
J.
Laane
(
Elsevier
,
Amsterdam
,
2008
), Chap. 11.
35.
T. D.
Lee
,
Symmetries, Asymmetries and the World of Particles
(
University of Washington Press
,
Seattle
,
1988
).
36.
M.
Quack
, “
Fundamental symmetries and symmetry violations from high resolution spectroscopy
,” in
Handbook of High-Resolution Spectroscopy
, edited by
M.
Quack
and
F.
Merkt
(
Wiley Chichester
,
2011
), Vol. 1, Chap. 18.
37.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
38.
J. T.
Hougen
,
J. Chem. Phys.
37
,
1433
(
1962
).
39.
J. T.
Hougen
,
J. Chem. Phys.
39
,
358
(
1963
).
40.
B. A.
Zon
and
B. G.
Katsnel’son
,
Sov. Phys. JETP
42
,
595
(
1976
).
41.
R. N.
Zare
,
Ber. Bunsenges. Phys. Chem.
86
,
422
(
1982
).
42.
B.
Friedrich
and
D.
Herschbach
,
Phys. Rev. Lett.
74
,
4623
(
1995
).
43.
T.
Seideman
,
J. Chem. Phys.
103
,
7887
(
1995
).
44.
N. E.
Henriksen
,
Chem. Phys. Lett.
312
,
196
(
1999
).
45.
F.
Rosca-Pruna
and
M. J. J.
Vrakking
,
Phys. Rev. Lett.
87
,
153902
(
2001
);
[PubMed]
F.
Rosca-Pruna
and
M. J. J.
Vrakking
,
J. Chem. Phys.
116
,
6579
(
2002
).
46.
H.
Stapelfeldt
and
T.
Seideman
,
Rev. Mod. Phys.
75
,
543
(
2003
).
47.
J.
Förster
and
A.
Saenz
,
ChemPhysChem
14
,
1438
(
2013
).
48.
J.
Förster
,
E.
Plésiat
,
À.
Magaña
, and
A.
Saenz
,
Phys. Rev. A
94
,
043405
(
2016
).
49.
A.
Fernández-Ramos
,
B. A.
Ellingson
,
R.
Meana-Pañeda
,
J. M. C.
Marques
, and
D. G.
Truhlar
,
Theor. Chem. Acc.
118
,
813
(
2007
).
50.
M. K.
Gilson
and
K. K.
Irikura
,
J. Phys. Chem. B
114
,
16304
(
2010
).
51.
T.
Grohmann
and
J.
Manz
,
Mol. Phys.
116
,
2538
(
2018
).
52.
T.
Grohmann
,
D.
Haase
,
D.
Jia
,
J.
Manz
, and
Y.
Yang
,
J. Chem. Phys.
149
,
184302
(
2018
).
53.
M.
Quack
,
Angew. Chem., Int. Ed.
28
,
571
(
1989
).
54.
M.
Quack
,
Angew. Chem., Int. Ed.
41
,
4618
(
2002
).
55.
J.
Trost
and
K.
Hornberger
,
Phys. Rev. Lett.
103
,
023202
(
2009
).
You do not currently have access to this content.