The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.

1.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
2.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
3.
E. J.
Sorin
and
V. S.
Pande
, “
Exploring the helix-coil transition via all-atom equilibrium ensemble simulations
,”
Biophys. J.
88
,
2472
2493
(
2005
).
4.
A.
Pérez
,
I.
Marchán
,
D.
Svozil
,
J.
Sponer
,
T. E.
Cheatham
,
C. A.
Laughton
, and
M.
Orozco
, “
Refinement of the AMBER force field for nucleic acids: Improving the description of/conformers
,”
Biophys. J.
92
,
3817
3829
(
2007
).
5.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
, and
A. D.
Mackerell
, Jr.
, “
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
,”
J. Comput. Chem.
31
,
671
690
(
2010
).
6.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
, “
Improved side-chain torsion potentials for the Amber ff99SB protein force field
,”
Proteins: Struct., Funct., Bioinf.
78
,
1950
1958
(
2010
).
7.
E.
Harder
,
W.
Damm
,
J.
Maple
,
C.
Wu
,
M.
Reboul
,
J. Y.
Xiang
,
L.
Wang
,
D.
Lupyan
,
M. K.
Dahlgren
,
J. L.
Knight
,
J. W.
Kaus
,
D. S.
Cerutti
,
G.
Krilov
,
W. L.
Jorgensen
,
R.
Abel
, and
R. A.
Friesner
, “
OPLS3: A force field providing broad coverage of drug-like small molecules and proteins
,”
J. Chem. Theory Comput.
12
,
281
296
(
2016
).
8.
L.-P.
Wang
,
K. A.
McKiernan
,
J.
Gomes
,
K. A.
Beauchamp
,
T.
Head-Gordon
,
J. E.
Rice
,
W. C.
Swope
,
T. J.
Martínez
, and
V. S.
Pande
, “
Building a more predictive protein force field: A systematic and reproducible route to AMBER-FB15
,”
J. Phys. Chem. B
121
,
4023
4039
(
2017
).
9.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
, “
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
,”
J. Am. Chem. Soc.
117
,
5179
5197
(
1995
).
10.
F. M.
Bickelhaupt
and
E. J.
Baerends
, “
The case for steric repulsion causing the staggered conformation of ethane
,”
Angew. Chem., Int. Ed.
42
,
4183
4188
(
2003
).
11.
F.
Weinhold
, “
Rebuttal to the Bickelhaupt–Baerends case for steric repulsion causing the staggered conformation of ethane
,”
Angew. Chem., Int. Ed.
42
,
4188
4194
(
2003
).
12.
B.
Mertz
,
M.
Lu
,
M.
Brown
, and
S.
Feller
, “
Steric and electronic influences on the torsional energy landscape of retinal
,”
Biophys. J.
101
,
L17
L19
(
2011
).
13.
N. L.
Allinger
, “
Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms
,”
J. Am. Chem. Soc.
99
,
8127
8134
(
1977
).
14.
V.
Tran
,
A.
Buleon
,
A.
Imberty
, and
S.
Perez
, “
Relaxed potential energy surfaces of maltose
,”
Biopolymers
28
,
679
690
(
1989
).
15.
W. L.
Jorgensen
and
J.
Tirado-Rives
, “
Molecular modeling of organic and biomolecular systems using BOSS and MCPRO
,”
J. Comput. Chem.
26
,
1689
1700
(
2005
).
16.
H.
Fujitani
,
A.
Matsuura
,
S.
Sakai
,
H.
Sato
, and
Y.
Tanida
, “
High-level ab initio calculations to improve protein backbone dihedral parameters
,”
J. Chem. Theory Comput.
5
,
1155
1165
(
2009
).
17.
M.
Buck
,
S.
Bouguet-Bonnet
,
R. W.
Pastor
, and
A. D.
MacKerell
, “
Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme
,”
Biophys. J.
90
,
L36
L38
(
2006
).
18.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based AMOEBA force field for proteins
,”
J. Chem. Theory Comput.
9
,
4046
4063
(
2013
).
19.
J.
Foresman
and
A.
Frisch
,
Exploring Chemistry with Electronic Structure Methods
(
Gaussian, Inc.
,
Wallingford, CT
,
2015
).
20.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian˜16 Revision C.01 (
Gaussian Inc
,
Wallingford CT
,
2016
).
21.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
 III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
 III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
 III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
22.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
23.
D.
Smith
,
L.
Burns
,
A.
Simmonett
,
R.
Parrish
,
M.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R.
Di Remigio
,
A.
Alenaizan
,
A.
James
,
S.
Lehtola
,
J.
Misiewicz
,
M.
Scheurer
,
R.
Shaw
,
J.
Schriber
,
Y.
Xie
,
Z.
Glick
,
D.
Sirianni
,
J.
O’Brien
,
J.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B.
Pritchard
,
B.
Brooks
,
H.
Schaefer
,
A.
Sokolov
,
K.
Patkowski
,
E.
DePrince
,
U.
Bozkaya
,
R.
King
,
F.
Evangelista
,
J.
Turney
,
T.
Crawford
, and
D.
Sherrill
, Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry,
2020
, Publisher: ChemRxiv.
24.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
25.
See http://www.turbomole.com for TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007.
26.
I. S.
Ufimtsev
and
T. J.
Martinez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
27.
A. V.
Titov
,
I. S.
Ufimtsev
,
N.
Luehr
, and
T. J.
Martinez
, “
Generating efficient quantum chemistry codes for novel architectures
,”
J. Chem. Theory Comput.
9
,
213
221
(
2013
).
28.
L.-P.
Wang
and
C.
Song
, “
Geometry optimization made simple with translation and rotation coordinates
,”
J. Chem. Phys.
144
,
214108
(
2016
).
29.
J.
Cioslowski
,
A. P.
Scott
, and
L.
Radom
, “
Catastrophes, bifurcations and hysteretic loops in torsional potentials of internal rotations in molecules
,”
Mol. Phys.
91
,
413
420
(
1997
).
30.
P. C. D.
Hawkins
,
A. G.
Skillman
,
G. L.
Warren
,
B. A.
Ellingson
, and
M. T.
Stahl
, “
Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and cambridge structural database
,”
J. Chem. Inf. Model.
50
,
572
584
(
2010
).
31.
N.-O.
Friedrich
,
C.
de Bruyn Kops
,
F.
Flachsenberg
,
K.
Sommer
,
M.
Rarey
, and
J.
Kirchmair
, “
Benchmarking commercial conformer ensemble generators
,”
J. Chem. Inf. Model.
57
,
2719
2728
(
2017
).
32.
Y.
Qiu
,
L.-P.
Wang
,
D. G. A.
Smith
,
J.
Horton
,
H.
Jang
, and
M.
Feng
, lpwgroup/torsiondrive: Release 1.0.0,
2020
, https://zenodo.org/record/3686014#.Xn-k3NNKhSM.
33.
D. G. A.
Smith
,
L. A.
Burns
,
L.
Naden
, and
M.
Welborn
, See https://qcarchive.molssi.org for QCArchive: A central source to compile, aggregate, query, and share quantum chemistry data; accessed January 2020.
34.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
35.
M.
Albrecht
,
D.
Rajan
, and
D.
Thain
, “
Making work queue cluster-friendly for data intensive scientific applications
,”
2013 IEEE International Conference on Cluster Computing (CLUSTER)
(
IEEE
,
2013
), pp.
1
8
, ISSN: 1552-5244, 2168-9253.
36.
N.
Kremer-Herman
,
B.
Tovar
, and
D.
Thain
, “
A lightweight model for right-sizing master-worker applications
,”
SC18: International Conference for High Performance Computing, Networking, Storage and Analysis
(
IEEE
,
2018
), pp.
504
516
.
37.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
38.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
39.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
40.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
2203
(
2016
).
41.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
, “
Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model
,”
J. Chem. Phys.
109
,
10669
10678
(
1998
).
42.
H.
Jang
(
2020
). “Update on Parsley minor releases (openff-1.1.0, 1.2.0),” Zenodo. .
43.
J.
Wagner
and
H.
Jang
(
2020
). “Openforcefield/openforcefields: Version 1.1.1 “Parsley”,” Zenodo. .
44.
N.
Godbout
,
D. R.
Salahub
,
J.
Andzelm
, and
E.
Wimmer
, “
Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation
,”
Can. J. Chem.
70
,
560
571
(
1992
).
45.
P. I.
Nagy
,
W. J.
Dunn
,
G.
Alagona
, and
C.
Ghio
, “
Theoretical calculations on 1,2-ethanediol. Gauche-trans equilibrium in gas-phase and aqueous solution
,”
J. Am. Chem. Soc.
113
,
6719
6729
(
1991
).
46.
A.
Lonardi
,
P.
Oborský
, and
P. H.
Hünenberger
, “
Solvent-modulated influence of intramolecular hydrogen-bonding on the conformational properties of the hydroxymethyl group in glucose and galactose: A molecular dynamics simulation study
,”
Helv. Chim. Acta
100
,
e1600158
(
2017
).
47.
R. S.
Paton
and
J. M.
Goodman
, “
Hydrogen bonding and -stacking: How reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions
,”
J. Chem. Inf. Model.
49
,
944
955
(
2009
).
48.
C.
Liu
,
J.-P.
Piquemal
, and
P.
Ren
, “
Implementation of geometry-dependent charge flux into the polarizable AMOEBA+ potential
,”
J. Phys. Chem. Lett.
11
,
419
426
(
2020
).
49.
C.
Bayly
, see https://docs.eyesopen.com/applications/quacpac/theory/molcharge_theory.html for MolCharge Theory—Applications, v2019.Nov.2.
50.
D. S.
Cerutti
,
J. E.
Rice
,
W. C.
Swope
, and
D. A.
Case
, “
Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization
,”
J. Phys. Chem. B
117
,
2328
2338
(
2013
).
51.
C.
Tian
,
K.
Kasavajhala
,
K. A. A.
Belfon
,
L.
Raguette
,
H.
Huang
,
A. N.
Migues
,
J.
Bickel
,
Y.
Wang
,
J.
Pincay
,
Q.
Wu
, and
C.
Simmerling
, “
ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution
,”
J. Chem. Theory Comput.
16
,
528
552
(
2020
).
52.
M.
Klok
,
N.
Boyle
,
M. T.
Pryce
,
A.
Meetsma
,
W. R.
Browne
, and
B. L.
Feringa
, “
MHz unidirectional rotation of molecular rotary motors
,”
J. Am. Chem. Soc.
130
,
10484
10485
(
2008
).
53.
T.
Kluyver
,
B.
Ragan-Kelley
,
F.
Pérez
,
B.
Granger
,
M.
Bussonnier
,
J.
Frederic
,
K.
Kelley
,
J.
Hamrick
,
J.
Grout
,
S.
Corlay
,
P.
Ivanov
,
D.
Avila
,
S.
Abdalla
, and
C.
Willing
,
Jupyter Notebooks
, A Publishing Format For Reproducible Computational Workflows (
Positioning and Power in Academic Publishing: Players, Agents and Agendas
,
2016
), pp.
87
90
.
54.
H.
Nguyen
,
D. A.
Case
, and
A. S.
Rose
, “
NGLview–interactive molecular graphics for Jupyter notebooks
,”
Bioinformatics
34
,
1241
1242
(
2017
).
55.
J.
Hermann
, see https://github.com/jhrmnn/pyberny for berny: Molecular structure optimizer. For the current version; accessed January 2020.
56.
See https://github.com/psi-rking/optking for OptKing: optking: A Python version of the PSI4 geometry optimization program. For the current version; accessed January 2020.
57.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułstrokak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
58.
M.
Turilli
,
M.
Santcroos
, and
S.
Jha
, “
A comprehensive perspective on pilot-job systems
,”
ACM Comput. Surv.
51
,
23
(
2018
).
59.
A. B.
Yoo
,
M. A.
Jette
, and
M.
Grondona
, “
SLURM: Simple linux utility for resource Management
,”
Job Scheduling Strategies for Parallel Processing
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
), pp.
44
60
.
60.
M.
Rocklin
, “
Dask: Parallel computation with blocked algorithms and task scheduling
,” in
Proceedings of the 14th Python in Science Conference
(
SciPy
,
2015
), pp.
130
136
.
61.
Y.
Babuji
,
A.
Woodard
,
Z.
Li
,
D. S.
Katz
,
B.
Clifford
,
R.
Kumar
,
L.
Lacinski
,
R.
Chard
,
J.
Wozniak
,
I.
Foster
,
M.
Wilde
, and
K.
Chard
, “
Parsl: Pervasive parallel programming in Python
,” in
28th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC)
,
2019
.
62.
M.
Turilli
,
A.
Merzky
,
V.
Balasubramanian
,
S.
Jha
, “
Building blocks for workflow system middleware
,” in
Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(
IEEE
,
2018
), p.
348
349
.
63.
A.
Jain
,
S. P.
Ong
,
W.
Chen
,
B.
Medasani
,
X.
Qu
,
M.
Kocher
,
M.
Brafman
,
G.
Petretto
,
G.-M.
Rignanese
,
G.
Hautier
,
D.
Gunter
, and
K. A.
Persson
, “
FireWorks: A dynamic workflow system designed for high-throughput applications
,”
Concurrency Comput.: Pract. Exper.
27
,
5037
5059
(
2015
), CPE-14-0307.R2.

Supplementary Material

You do not currently have access to this content.