The fragmentation upon electron impact ionization of Ar4He1000 is investigated by means of mixed quantum–classical dynamics simulations. The Ar4+ dopant dynamics is described by a surface hopping method coupled with a diatomics-in-molecules model to properly take into account the multiple Ar4+ electronic surfaces and possible transitions between them. Helium atoms are treated individually using zero-point averaged dynamics, a method based on the building of an effective He–He potential. Fast electronic relaxation is observed from less than 2 ps to ∼30 ps, depending on initial conditions. The main fragments observed are Ar2+Heq and Ar3+Heq (q ≤ 1000), with a strong contribution of the bare Ar2+ ion, and neither Ar+ nor Ar+Heq fragments are found. The smaller fragments (q ≤ 50) are found to mostly come from ion ejection, whereas larger fragments (q > 500) originate from long-term ion trapping. Although the structure of the trapped Ar2+ ions is the same as in the gas phase, trapped Ar3+ and Ar4+ are rather slightly bound Ar2+Ar and Ar2+ArAr structures (i.e., an Ar2+ core with one or two argon atoms roaming within the droplet). These loose structures can undergo geminate recombination and release Ar3+Heq or Ar4+Heq (q ≤ 50) in the gas phase and/or induce strong helium droplet evaporation. Finally, the translational energy of the fragment center of mass was found to be suitable to provide a clear signature of the broad variety of processes at play in our simulations.

1.
M.
Hartmann
,
R. E.
Miller
,
J. P.
Toennies
, and
A.
Vilesov
,
Phys. Rev. Lett.
75
,
1566
(
1995
).
2.
J.
Harms
,
M.
Hartmann
,
J. P.
Toennies
,
A. F.
Vilesov
, and
B.
Sartakov
,
J. Mol. Spectrosc.
185
,
204
(
1997
).
3.
S.
Grebenev
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Science
279
,
2083
(
1998
).
4.
K.
Nauta
and
R. E.
Miller
,
Science
283
,
1895
(
1999
).
5.
G.
Haberfehler
,
P.
Thaler
,
D.
Knez
,
A.
Volk
,
F.
Hofer
,
W. E.
Ernst
, and
G.
Kothleitner
,
Nat. Commun.
6
,
8779
(
2015
).
6.
M.
Lewerenz
,
B.
Schilling
, and
J. P.
Toennies
,
J. Chem. Phys.
102
,
8191
(
1995
).
7.
R.
Fröchtenicht
,
U.
Henne
,
J. P.
Toennies
,
A.
Ding
,
M.
Fieber-Erdmann
, and
T.
Drewello
,
J. Chem. Phys.
104
,
2548
(
1996
).
8.
B. E.
Callicoatt
,
K.
Förde
,
L. F.
Jung
,
T.
Ruchti
, and
K. C.
Janda
,
J. Chem. Phys.
109
,
10195
(
1998
).
9.
B. E.
Callicoatt
,
K.
Förde
,
T.
Ruchti
,
L.
Jung
,
K. C.
Janda
, and
N.
Halberstadt
,
J. Chem. Phys.
108
,
9371
(
1998
).
10.
N.
Halberstadt
and
K. C.
Janda
,
Chem. Phys. Lett.
282
,
409
(
1998
), see also Erratum, 2016.
11.
J. H.
Kim
,
D. S.
Peterka
,
C. C.
Wang
, and
D. M.
Neumark
,
J. Chem. Phys.
124
,
214301
(
2006
).
13.
U.
Buck
, in
The Chemical Physics of Atomic and Molecular Clusters
, edited by
G.
Scoles
(
North Holland
,
Amsterdam
,
1990
), p.
543
.
14.
T. D.
Märk
and
O.
Echt
, in
Clusters of Atoms and Molecules
, edited by
H.
Haberland
(
Springer
,
Berlin
,
1994
), pp.
154
182
.
15.
A.
Bastida
,
N.
Halberstadt
,
J. A.
Beswick
,
F. X.
Gadéa
,
U.
Buck
,
R.
Galonska
, and
C.
Lauenstein
,
Chem. Phys. Lett.
249
,
1
(
1996
).
16.
P.
Lohbrandt
,
R.
Galonska
,
H.
Kim
,
M.
Schmidt
,
C.
Lauenstein
, and
U.
Buck
, in
Atomic and Molecular Beams: The State of the Art 2000
, edited by
R.
Campargue
(
Springer
,
Berlin
,
2000
), pp.
623
636
.
17.
D.
Bonhommeau
,
A.
Viel
, and
N.
Halberstadt
,
J. Chem. Phys.
123
,
054316
(
2005
).
18.
D.
Bonhommeau
,
N.
Halberstadt
, and
A.
Viel
,
J. Chem. Phys.
124
,
024328
(
2006
).
19.
D.
Bonhommeau
,
N.
Halberstadt
, and
A.
Viel
,
J. Chem. Phys.
124
,
184314
(
2006
).
20.
D.
Bonhommeau
,
N.
Halberstadt
, and
U.
Buck
,
Int. Rev. Phys. Chem.
26
,
353
(
2007
).
21.
22.
IUPAC distinguishes between primary geminate recombination, where recombination occurs before any separation by diffusion, and secondary geminate recombination where it occurs after the fragments have been separated and then come together by diffusion. The caging referred to in this work would be secondary geminate recombination, although some primary geminate recombination can also occur at very early times.
IUPAC: Compendium of Chemical Terminology
, 2nd ed. (the “Gold Book”), compiled by
A. D.
McNaught
and
A.
Wilkinson
(
Blackwell Scientific Publications
,
Oxford
,
1997
), online version (2019) created by S. J. Chalk, ISBN: 0-9678550-9-8 .
23.
A.
Scheidemann
,
B.
Schilling
, and
J. P.
Toennies
,
J. Phys. Chem.
97
,
2128
(
1993
).
24.
D.
Stolyarov
,
E.
Polyakova
, and
C.
Wittig
,
J. Phys. Chem. A
108
,
9841
(
2004
).
25.
D. M.
Brink
and
S.
Stringari
,
Z. Phys. D: At., Mol. Clusters
15
,
257
(
1990
).
26.
M.
Iino
,
M.
Suzuki
, and
A. J.
Ikushima
,
J. Low Temp. Phys.
61
,
155
(
1985
).
27.
W. K.
Lewis
,
B. E.
Applegate
,
J.
Sztáray
,
B.
Sztáray
,
T.
Baer
,
R. J.
Bemish
, and
R. E.
Miller
,
J. Am. Chem. Soc.
126
,
11283
(
2004
).
28.
W. K.
Lewis
,
R. J.
Bemish
, and
R. E.
Miller
,
J. Chem. Phys.
123
,
141103
(
2005
).
29.
A.
Braun
and
M.
Drabbels
,
Phys. Rev. Lett.
93
,
253401
(
2004
).
30.
A.
Braun
and
M.
Drabbels
,
J. Chem. Phys.
127
,
114303
(
2007
).
31.
A.
Braun
and
M.
Drabbels
,
J. Chem. Phys.
127
,
114305
(
2007
).
32.
T.
Takayanagi
and
M.
Shiga
,
Chem. Phys. Lett.
372
,
90
(
2003
).
33.
A.
Vilà
,
M.
González
, and
R.
Mayol
,
J. Chem. Theory Comput.
11
,
899
(
2015
).
34.
A.
Vilà
,
M.
González
, and
R.
Mayol
,
Phys. Chem. Chem. Phys.
18
,
2409
(
2016
).
35.
A.
Vilà
,
M.
González
, and
R.
Mayol
,
Phys. Chem. Chem. Phys.
17
,
32241
(
2015
).
36.

We call the dynamics “mixed quantum-classical” rather than “classical” since the latter usually refers to a specific method based on the JWKB approximation of the wave function, resulting from a development in powers of Planck’s constant.

37.
D.
Bonhommeau
,
P. T.
Lake
, Jr.
,
C.
Le Quiniou
,
M.
Lewerenz
, and
N.
Halberstadt
,
J. Chem. Phys.
126
,
051104
(
2007
).
38.
D.
Bonhommeau
,
M.
Lewerenz
, and
N.
Halberstadt
,
J. Chem. Phys.
128
,
054302
(
2008
).
39.
A.
Scheidemann
,
J. P.
Toennies
, and
J. A.
Northby
,
Phys. Rev. Lett.
64
,
1899
(
1990
).
40.
T.
Ruchti
,
K.
Förde
,
B. E.
Callicoatt
,
H.
Ludwigs
, and
K. C.
Janda
,
J. Chem. Phys.
109
,
10679
(
1998
).
41.
C. A.
Brindle
,
M. R.
Prado
,
K. C.
Janda
,
N.
Halberstadt
, and
M.
Lewerenz
,
J. Chem. Phys.
123
,
064312
(
2005
).
42.
P.
Bartl
,
S.
Denifl
,
P.
Scheier
, and
O.
Echt
,
Phys. Chem. Chem. Phys.
15
,
16599
(
2013
).
43.
T.-K.
Ha
,
P.
Rupper
,
A.
Wüest
, and
F.
Merkt
,
Mol. Phys.
101
,
827
(
2003
).
44.
P.
Bartl
,
C.
Leidlmair
,
S.
Denifl
,
P.
Scheier
, and
O.
Echt
,
J. Phys. Chem. A
118
,
8050
(
2014
).
45.
U.
Buck
and
H.
Meyer
,
Phys. Rev. Lett.
52
,
109
(
1984
).
46.
U.
Buck
and
H.
Meyer
,
J. Chem. Phys.
84
,
4854
(
1986
).
47.
M.
Barranco
,
R.
Guardiola
,
S.
Hernández
,
R.
Mayol
,
J.
Navarro
, and
M.
Pi
,
J. Low Temp. Phys.
142
,
1
(
2006
).
48.
F.
Ancilotto
,
M.
Barranco
,
F.
Coppens
,
J.
Eloranta
,
N.
Halberstadt
,
A.
Hernando
,
D.
Mateo
, and
M.
Pi
,
Int. Rev. Phys. Chem.
36
,
621
(
2017
).
49.
T.
Takayanagi
and
M.
Shiga
,
Phys. Chem. Chem. Phys.
6
,
3241
(
2004
).
50.
A.
Wada
,
T.
Takayanagi
, and
M.
Shiga
,
J. Chem. Phys.
119
,
5478
(
2003
).
51.
52.
E. J.
Heller
,
J. Chem. Phys.
75
,
2923
(
1981
).
53.
M.
Sterling
,
Z.
Li
, and
V. A.
Apkarian
,
J. Chem. Phys.
103
,
5679
(
1995
).
54.
P.
Slavíček
,
P.
Jungwirth
,
M.
Lewerenz
,
N. H.
Nahler
,
M.
Fárník
, and
U.
Buck
,
J. Phys. Chem. A
107
,
7743
(
2003
).
55.

The “temperature” is a kinetic temperature since the dynamics is microcanonical. The trajectory is periodically interrupted, and velocities are rescaled if needed in order to maintain the temperature.

56.
R. A.
Aziz
,
J. Chem. Phys.
99
,
4518
(
1993
).
57.
M.
Keil
,
L. J.
Danielson
, and
P. J.
Dunlop
,
J. Chem. Phys.
94
,
296
(
1991
).
58.
C.
Douketis
,
G.
Scoles
,
S.
Marchetti
,
M.
Zen
, and
A. J.
Thakkar
,
J. Chem. Phys.
76
,
3057
(
1982
).
59.
A. R.
Janzen
and
R. A.
Aziz
,
J. Chem. Phys.
107
,
914
(
1997
).
60.
O.
Echt
,
D.
Kreisle
,
E.
Recknagel
,
J. J.
Saenz
,
R.
Casero
, and
J. M.
Soler
,
Phys. Rev. A
38
,
3236
(
1988
).
61.
C. L.
Briant
and
J. J.
Burton
,
J. Chem. Phys.
63
,
2045
(
1975
).
62.

An error has been noticed in Ref. 23, p. 5 where tanh[a(R + b)] is indicated instead of tanh[a(Rb)] for the switching function T(R).

63.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
64.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
65.
F. O.
Ellison
,
J. Am. Chem. Soc.
85
,
3540
(
1963
).
66.
W. R.
Wadt
,
Appl. Phys. Lett.
38
,
1030
(
1981
).
67.
P. J.
Kuntz
and
J.
Valldorf
,
Z. Phys. D: At., Mol. Clusters
8
,
195
(
1988
).
68.
Argon electric dipole polarizability extracted from the NIST database on 19 March 2018 at URL: https://cccbdb.nist.gov/exp2x.asp.
69.
A.
Carrington
,
C. A.
Leach
,
A. J.
Marr
,
A. M.
Shaw
,
M. R.
Viant
,
J. M.
Hutson
, and
M. M.
Law
,
J. Chem. Phys.
102
,
2379
(
1995
).
70.
D.
Bonhommeau
,
A.
Viel
, and
N.
Halberstadt
,
J. Chem. Phys.
120
,
11359
(
2004
).
71.
N. C.
Blais
and
D. G.
Truhlar
,
J. Chem. Phys.
79
,
1334
(
1983
).
72.
N. C.
Blais
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
89
,
6204
(
1988
).
73.
M. D.
Hack
,
A. W.
Jasper
,
Y. L.
Volobuev
,
D. W.
Schwenke
, and
D. G.
Truhlar
,
J. Phys. Chem. A
103
,
6309
(
1999
).
75.
D. A.
Bonhommeau
,
J. Chem. Phys.
146
,
124314
(
2017
).
76.
F.
Laimer
,
L.
Kranabetter
,
L.
Tiefenthaler
,
S.
Albertini
,
F.
Zappa
,
A. M.
Ellis
,
M.
Gatchell
, and
P.
Scheier
,
Phys. Rev. Lett.
123
,
165301
(
2019
).
77.
I.
Janeček
,
T.
Janča
,
P.
Naar
,
R.
Kalus
, and
F. X.
Gadea
,
J. Chem. Phys.
138
,
044303
(
2013
).
78.
F.
Coppens
,
F.
Ancilotto
,
M.
Barranco
,
N.
Halberstadt
, and
M.
Pi
,
Phys. Chem. Chem. Phys.
21
,
17423
(
2019
).
79.
A.
Leal
,
D.
Mateo
,
A.
Hernando
,
M.
Pi
,
M.
Barranco
,
A.
Ponti
,
F.
Cargnoni
, and
M.
Drabbels
,
Phys. Rev. B
90
,
224518
(
2014
).
80.
J. B.
Fenn
,
Angew. Chem., Int. Ed.
42
,
3871
(
2003
).
81.
M.
Dole
,
L. L.
Mack
,
R. L.
Hines
,
R. C.
Mobley
,
L. D.
Ferguson
, and
M. B.
Alice
,
J. Chem. Phys.
49
,
2240
(
1968
).
82.
L. F.
Gomez
,
K. R.
Ferguson
,
J. P.
Cryan
,
C.
Bacellar
,
R. M. P.
Tanyag
,
C.
Jones
,
S.
Schorb
,
D.
Anielski
,
A.
Belkacem
,
C.
Bernando
,
R.
Boll
,
J.
Bozek
,
S.
Carron
,
G.
Chen
,
T.
Delmas
,
L.
Englert
,
S. W.
Epp
,
B.
Erk
,
L.
Foucar
,
R.
Hartmann
,
A.
Hexemer
,
M.
Huth
,
J.
Kwok
,
S. R.
Leone
,
J. H. S.
Ma
,
F. R. N. C.
Maia
,
E.
Malmerberg
,
S.
Marchesini
,
D. M.
Neumark
,
B.
Poon
,
J.
Prell
,
D.
Rolles
,
B.
Rudek
,
A.
Rudenko
,
M.
Seifrid
,
K. R.
Siefermann
,
F. P.
Sturm
,
M.
Swiggers
,
J.
Ullrich
,
F.
Weise
,
P.
Zwart
,
C.
Bostedt
,
O.
Gessner
, and
A. F.
Vilesov
,
Science
345
,
906
(
2014
).
83.
C. F.
Jones
,
C.
Bernando
,
S.
Erukala
, and
A. F.
Vilesov
,
J. Phys. Chem. A
123
,
5859
(
2019
).
84.
B. L.
Hammond
,
W. A.
Lester
, Jr.
, and
P. J.
Reynolds
,
Monte Carlo Methods in Ab Initio Quantum Chemistry
, World Scientific Lecture and Course Notes in Chemistry Vol. 1 (
World Scientific
,
Singapore
,
1975
).
85.
D.
Blume
,
M.
Lewerenz
,
F.
Huisken
, and
M.
Kaloudis
,
J. Chem. Phys.
105
,
8666
(
1996
).
86.
M.
Lewerenz
,
J. Chem. Phys.
106
,
4596
(
1997
).

Supplementary Material

You do not currently have access to this content.