We present an extensive range of quantum calculations for the state-changing rotational dynamics involving two simple molecular anions that are expected to play some role in the evolutionary analysis of chemical networks in the interstellar environments, C2H (X1Σ+) and C2N (X3Σ), but for which inelastic rates are only known for C2H. The same systems are also of direct interest in modeling selective photo-detachment experiments in cold ion traps where the He atoms function as the chief buffer gas at the low trap temperatures. This study employs accurate, ab initio calculations of the interaction potential energy surfaces for these anions, treated as rigid rotors, and the He atom to obtain a wide range of state-changing quantum cross sections and rates at temperatures up to about 100 K. The results are analyzed and compared for the two systems to show differences and similarities between their rates of state-changing dynamics.

1.
M. A.
Cordiner
,
T. J.
Millar
,
C.
Walsh
,
E.
Herbst
,
D. C.
Lis
,
T. A.
Bell
, and
E.
Roueff
, “
Organic molecular anions in interstellar and circumstellar environments
,”
Proc. Int. Astron. Union
4
,
157
160
(
2008
).
2.
M. A.
Cordiner
and
T. J.
Millar
, “
Density-enhanced gas and dust shells in a new chemical model for IRC+10216
,”
Astrophys. J.
697
,
68
(
2009
).
3.
T. J.
Millar
,
C.
Walsh
, and
T. A.
Field
, “
Negative ions in space
,”
Chem. Rev.
117
,
1765
1795
(
2017
).
4.
E.
Herbst
and
Y.
Osamura
, “
Calculations on the formation rates and mechanisms for CnH anions in interstellar and circumstellar media
,”
Astrophys. J.
679
,
1670
(
2008
).
5.
C.
Walsh
,
N.
Harada
,
E.
Herbst
, and
T. J.
Millar
, “
The effects of molecular anions on the chemistry of dark clouds
,”
Astrophys. J.
700
,
752
(
2009
).
6.
B.
Eichelberger
,
T. P.
Snow
,
C.
Barckholtz
, and
V. M.
Bierbaum
, “
Reactions of H, N, and O atoms with carbon chain anions of interstellar interest: An experimental study
,”
Astrophys. J.
667
,
1283
(
2007
).
7.
T.
Best
,
R.
Otto
,
S.
Trippel
,
P.
Hlavenka
,
A.
von Zastrow
,
S.
Eisenbach
,
S.
Jézouin
,
R.
Wester
,
E.
Vigren
,
M.
Hamberg
, and
W. D.
Geppert
, “
Absolute photodetachment cross-section measurements for hydrocarbon chain anions
,”
Astrophys. J.
742
,
63
(
2011
).
8.
N.
Douguet
,
V.
Kokoouline
, and
A. E.
Orel
, “
Photodetachment cross sections of the C2nH (n = 1–3) hydrocarbon-chain anions
,”
Phys. Rev. A
90
,
063410
(
2014
).
9.
A.
Dalgarno
and
R. A.
McCray
, “
The formation of interstellar molecules from negative ions
,”
Astrophys. J.
181
,
95
(
1973
).
10.
E.
Herbst
, “
Can negative molecular ions be detected in dense interstellar clouds?
,”
Nature
289
,
656
(
1981
).
11.
M. C.
McCarthy
,
C. A.
Gottlieb
,
H.
Gupta
, and
P.
Thaddeus
, “
Laboratory and astronomical identification of the negative molecular ion C6H
,”
Astrophys. J.
652
,
L141
(
2006
).
12.
K.
Kewaguchi
,
Y.
Kasai
,
S.-I.
Ishikawa
, and
N.
Kaifu
, “
A spectral-line survey observation of IRC +10216 between 28 and 50 GHz
,”
Publ. Astron. Soc. Jpn.
47
,
853
(
1995
).
13.
J.
Cernicharo
,
M.
Guélin
,
M.
Agúndez
,
K.
Kawaguchi
,
M.
McCarthy
, and
P.
Thaddeus
, “
Astronomical detection of C4H, the second interstellar anion
,”
Astron. Astrophys.
467
,
L37
(
2007
).
14.
A. J.
Remijan
,
J. M.
Hollis
,
F. J.
Lovas
,
M. A.
Cordiner
,
T. J.
Millar
,
A. J.
Markwick-Kemper
, and
P. R.
Jewell
, “
Detection of C8H and comparison with C8H toward IRC +10216
,”
Astrophys. J.
664
,
L47
(
2007
).
15.
S.
Brünken
,
H.
Gupta
,
C. A.
Gottlieb
,
M. C.
McCarthy
, and
P.
Thaddeus
, “
Detection of the carbon chain negative ion C8H in TMC-1
,”
Astrophys. J.
664
,
L43
(
2007
).
16.
P.
Thaddeus
,
C. A.
Gottlieb
,
H.
Gupta
,
S.
Brünken
,
M. C.
McCarthy
,
M.
Agúndez
,
M.
Guélin
, and
J.
Cernicharo
, “
Laboratory and astronomical detection of the negative molecular ion C3N
,”
Astrophys. J.
677
,
1132
(
2008
).
17.
J.
Cernicharo
,
M.
Guélin
,
M.
Agúndez
,
M. C.
McCarthy
, and
P.
Thaddeus
, “
Detection of C5N and vibrationally excited C6H in IRC +10216
,”
Astrophys. J.
688
,
L83
(
2008
).
18.
M.
Agúndez
,
J.
Cernicharo
,
M.
Guélin
,
C.
Kahane
,
E.
Roueff
,
J.
Kłos
,
F. J.
Aoiz
,
F.
Lique
,
N.
Marcelino
,
J. R.
Goicoechea
,
M.
González García
,
C. A.
Gottlieb
,
M. C.
McCarthy
, and
P.
Thaddeus
, “
Astronomical identification of CN-, the smallest observed molecular anion
,”
Astron. Astrophys.
517
,
L2
(
2010
).
19.
N.
Sakai
,
T.
Shiino
,
T.
Hirota
,
T.
Sakai
, and
S.
Yamamoto
, “
Long carbon-chain molecules and their anions in the starless core, Lupus-1A
,”
Astrophys. J.
718
,
L49
(
2010
).
20.
S.
Brünken
,
C. A.
Gottlieb
,
H.
Gupta
,
M. C.
McCarthy
, and
P.
Thaddeus
, “
Laboratory detection of the negative molecular ion CCH
,”
Astron. Astrophys.
464
,
L33
(
2007
).
21.
T.
Amano
, “
Extended negative glow and “hollow anode” discharges for submillimeter-wave observation of CN, C2H, and C4H
,”
J. Chem. Phys.
129
,
244305
(
2008
).
22.
K. D.
Tucker
,
M. L.
Kutner
, and
P.
Thaddeus
, “
The ethynyl radical C2H—A new interstellar molecule
,”
Astrophys. J.
193
,
L115
(
1974
).
23.
C.
Barckholtz
,
T. P.
Snow
, and
V. M.
Bierbaum
, “
Reactions of Cn and CnH with atomic and molecular hydrogen
,”
Astrophys. J.
547
,
L171
(
2001
).
24.
A.
Spielfiedel
,
N.
Feautrier
,
F.
Najar
,
D.
Ben Abdallah
,
F.
Dayou
,
M. L.
Senent
, and
F.
Lique
, “
Fine and hyperfine excitation of C2H by collisions with He at low temperature
,”
Mon. Not. R. Astron. Soc.
421
,
1891
(
2012
).
25.
P. J.
Dagdigian
, “
Hyperfine excitation of C2H in collisions with ortho- and para-H2
,”
Mon. Not. R. Astron. Soc.
479
,
3227
(
2018
).
26.
F.
Dumouchel
,
F.
Lique
,
A.
Spielfiedel
, and
N.
Feautrier
, “
Hyperfine excitation of C2H and C2D by para-H2
,”
Mon. Not. R. Astron. Soc.
471
,
1849
(
2017
).
27.
F.
Dumouchel
,
A.
Spielfiedel
,
M. L.
Senent
, and
N.
Feautrier
, “
Temperature dependence of rotational excitation rate coefficients of C2H in collision with He
,”
Chem. Phys. Lett.
533
,
6
(
2012
).
28.
M. L.
Senent
,
F.
Dayou
,
F.
Dumouchel
,
C.
Balança
, and
N.
Feautrier
, “
Inelastic rate coefficients for collisions of C4H with para-H2(j = 0) at low temperatures
,”
Mon. Not. R. Astron. Soc.
486
,
422
(
2019
).
29.
K. M.
Walker
,
F.
Lique
, and
R.
Dawes
, “
Fine and hyperfine collisional excitation of C6H by He
,”
Mon. Not. R. Astron. Soc.
473
,
1407
(
2017
).
30.
K. M.
Walker
,
F.
Lique
,
F.
Dumouchel
, and
R.
Dawes
, “
Inelastic rate coefficients for collisions of C6H with H2 and He
,”
Mon. Not. R. Astron. Soc.
466
,
831
(
2016
).
31.
F.
Lique
,
A.
Spielfiedel
,
N.
Feautrier
,
I. F.
Schneider
,
J.
Kłos
, and
M. H.
Alexander
, “
Rotational excitation of CN(x2σ+) by He: Theory and comparison with experiments
,”
J. Chem. Phys.
132
,
024303
(
2010
).
32.
F.
Lique
and
J.
Kłos
, “
Hyperfine excitation of CN by He
,”
Mon. Not. R. Astron. Soc.
413
,
L20
L23
(
2011
), http://oup.prod.sis.lan/mnrasl/article-pdf/413/1/L20/4895585/413-1-L20.pdf.
33.
Y.
Kalgina
,
F.
Lique
, and
J.
Kłos
, “
Hyperfine collisional rate coefficients of CN with H2(j = 0)
,”
Mon. Not. R. Astron. Soc.
422
,
812
(
2012
).
34.
Y.
Kalgina
,
J.
Kłos
, and
F.
Lique
, “
Collisional excitation of CN(X2Σ+) by para- and ortho-H2: Fine-structure resolved transitions
,”
J. Chem. Phys.
139
,
074301
(
2013
).
35.
J.
Kłos
and
F.
Lique
, “
First rate coefficients for an interstellar anion: Application to the CN-H2 collisional system
,”
Mon. Not. R. Astron. Soc.
418
,
271
275
(
2011
).
36.
L.
González-Sánchez
,
B. P.
Mant
,
R.
Wester
, and
F. A.
Gianturco
, “
Rotationally inelastic collisions of CN with He: Computing cross sections and rates in the interstellar medium
,”
Astrophys. J.
(in press) (
2020
).
37.
M.
Lara-Moreno
,
T.
Stoecklin
, and
P.
Halvick
, “
Rotational (de-) excitations of C3N by collisions with He atoms
,”
Mon. Not. R. Astron. Soc.
467
,
4174
(
2017
).
38.
M.
Lara-Moreno
,
T.
Stoecklin
, and
P.
Halvick
, “
Rotational transitions of C3N induced by collision with H2
,”
Mon. Not. R. Astron. Soc.
486
,
414
(
2019
).
39.
T.
Tchakoua
,
O.
Motapon
, and
M.
Nsangou
, “
Cross-sections and rate coefficients calculations for rotational excitation of cyanoethynylide ions (C3N) induced by collision with He atoms at low temperature
,”
J. Phys. B: At. Mol. Opt. Phys.
51
,
045202
(
2018
).
40.
B.
Bastian
,
T.
Michaelsen
,
J.
Meyer
, and
R.
Wester
, “
Anionic carbon chain growth in reactions of C2, C4, C6, C2H, C4H, and C6H with C2H2
,”
Astrophys. J.
878
,
162
(
2019
).
41.
J. K.
Anderson
and
L. M.
Ziurys
, “
Detection of CCN (x2πr) in IRC+10216: Constraining carbon-chain chemistry
,”
Astrophys. J.
795
,
L1
(
2014
).
42.
K.
Kawaguchi
,
T.
Suzuki
,
S.
Saito
,
E.
Hirota
, and
T.
Kasuya
, “
Dye laser excitation spectroscopy of the CCN radical
,”
J. Mol. Spectrosc.
106
,
320
(
1984
).
43.
E.
Garand
,
T. I.
Yacovitch
, and
D. M.
Neumark
, “
Slow photoelectron velocity-map imaging spectroscopy of C2N, C4N, and C6N
,”
J. Chem. Phys.
130
,
064304
(
2009
).
44.
X.
Huang
and
T. J.
Lee
, “
Accurate ab initio quartic force fields for NH2 and CCH and rovibrational spectroscopic constants for their isotopologs
,”
J. Chem. Phys.
131
,
104301
(
2009
).
45.
K. M.
Ervin
and
W. C.
Lineberger
, “
Photoelectron Spectra of C2 and C2H
,”
J. Phys. Chem.
95
,
1167
(
1991
).
46.
J.
Zhou
,
E.
Garand
, and
D. M.
Neumark
, “
Vibronic structure of C2H and C2D from anion slow electron velocity-map imaging spectroscopy
,”
J. Chem. Phys.
127
,
114313
(
2007
).
47.
M. L.
Senent
and
M.
Hochlaf
, “
Reactivity of anions in interstellar media: Detectability and applications
,”
Astrophys. J.
768
,
59
(
2013
).
48.
F. A.
Gianturco
,
L.
González-Sánchez
,
B. P.
Mant
, and
R.
Wester
, “
Modelling state-selective photodetachment in cold ion traps: Rotational state “crowding” in small anions
,”
J. Chem. Phys.
151
,
144304
(
2019
).
49.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
50.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, Molpro, version 2019.2, a package of ab initio programs,
2019
, see https://www.molpro.net.
51.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
(
1994
).
52.
H.-J.
Werner
and
P. J.
Knowles
, “
An efficient internally contracted multiconfiguration-reference configuration interaction method
,”
J. Chem. Phys.
89
,
5803
(
1988
).
53.
K. R.
Shamasundar
,
G.
Knizia
, and
H.-J.
Werner
, “
A new internally contracted multi-reference configuration interaction method
,”
J. Chem. Phys.
135
,
053101
(
2011
).
54.
S. R.
Langhoff
and
E. R.
Davidson
, “
Configuration interaction calculations on the nitrogen molecule
,”
Int. J. Quantum Chem.
8
,
61
72
(
1974
).
55.
J.
Buenker
and
S.
Peyeremhoff
, “
Ab initio calculations close to the full CI level of accuracyand their use for the interpretation of molecular spectra
,” in
New Horizons of Quantum Chemistry
, edited by
P.-O.
Lowdin
and
B.
Pullman
(
D. Reidel Pub. Co., Dordrecht.
,
1982
), pp.
183
219
.
56.
M.
Puchalski
,
K.
Szalewicz
,
M.
Lesiuk
, and
B.
Jeziorski
, “
QED calculation of the dipole polarizability of helium atom
,”
Phys. Rev. A
101
,
022505
(
2020
).
57.
D.
López-Durán
,
E.
Bodo
, and
F. A.
Gianturco
, “
ASPIN: An all spin scattering code for atom-molecule rovibrationally inelastic cross sections
,”
Comput. Phys. Commun.
179
,
821
(
2008
).
58.
R.
Martinazzo
,
E.
Bodo
, and
F. A.
Gianturco
, “
A modified variable-phase algorithm for multichannel scattering with long-range potentials
,”
Comput. Phys. Commun.
151
,
187
(
2003
).
59.
M.
Hernández Vera
,
F. A.
Gianturco
,
R.
Wester
,
H.
da Silva
, Jr.
,
O.
Dulieu
, and
S.
Schiller
, “
Rotationally inelastic collisions of H2+ ions with He buffer gas: Computing cross sections and rates
,”
J. Chem. Phys.
146
,
124310
(
2017
).
60.
L.
González-Sánchez
,
E.
Bodo
, and
F. A.
Gianturco
, “
Quantum scattering of OH (x2π) with He (1s): Propensity features in rotational relaxation at ultralow energies
,”
Phys. Rev. A
73
,
022703
(
2006
).
61.
L.
González-Sánchez
,
E.
Bodo
, and
F. A.
Gianturco
, “
Quenching of molecular ions by He buffer loading at ultralow energies: Rotational cooling of OH+(3σ) from quantum calculations
,”
Eur. Phys. J. D
44
,
65
(
2007
).
62.
L.
González-Sánchez
,
R.
Wester
, and
F. A.
Gianturco
, “
Modeling quantum kinetics in ion traps: State-changing collisions for OH+
,”
ChemPhysChem
19
,
1866
(
2018
).
63.
M. H.
Alexander
and
P. J.
Dagdigian
, “
Propensity rules in rotationally inelastic collisions of diatomic molecules in 3σ electronic states
,”
J. Phys. Chem.
79
,
302
(
1983
).
64.
D. E.
Manolopoulos
, “
An improved log derivative method for inelastic scattering
,”
J. Chem. Phys.
85
,
6425
(
1986
).
65.
F. A.
Gianturco
,
O. Y.
Lakhmanskaya
,
M. H.
Vera
,
E.
Yurtsever
, and
R.
Wester
, “
Collisional relaxation kinetics for ortho and para NHNH2 under photodetachment in cold ion traps
,”
Faraday Discuss.
212
,
117
135
(
2018
).
66.
B. P.
Mant
,
M.
Nötzold
,
L.
González-Sánchez
,
R.
Wester
, and
F. A.
Gianturco
, “
Rotational state selective C2H losses from quantum dynamics
,”
Eur. Phys. J. D
(submitted) (
2020
).
67.
M.
Simpson
,
M.
Nötzold
,
T.
Michaelsen
,
B.
Bastian
,
J.
Meyer
,
R.
Wild
,
F. A.
Gianturco
,
M.
Milovanovic
,
V.
Kokoouline
, and
R.
Wester
, “
Threshold photo-detachment spectroscopy and modelling of the astrochemical anion CN
” (unpublished) (
2020
).

Supplementary Material

You do not currently have access to this content.