The crystallization of entangled polymers from their melt is investigated using computer simulation with a coarse-grained model. Using hybrid Monte Carlo simulations enables us to probe the behavior of long polymer chains. We identify solid-like beads with a centrosymmetry local order parameter and compute the nucleation free-energy barrier at relatively high supercooling with adaptive-bias windowed umbrella sampling. Our results demonstrate that the critical nucleus sizes and the heights of free-energy barriers do not significantly depend on the molecular weight of the polymer; however, the nucleation rate decreases with the increase in molecular weight. Moreover, an analysis of the composition of the critical nucleus suggests that intra-molecular growth of the nucleated cluster does not contribute significantly to crystallization for this system.

1.
Y.
Bin
,
M.
Mine
,
A.
Koganemaru
,
X.
Jiang
, and
M.
Matsuo
, “
Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites
,”
Polymer
47
,
1308
(
2006
).
2.
F.
Luo
,
C.
Geng
,
K.
Wang
,
H.
Deng
,
F.
Chen
,
Q.
Fu
, and
B.
Na
, “
New understanding in tuning toughness of β-polypropylene: The role of β-nucleated crystalline morphology
,”
Macromolecules
42
,
9325
(
2009
).
3.
A.
Pei
,
Q.
Zhou
, and
L. A.
Berglund
, “
Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) – Crystallization and mechanical property effects
,”
Compos. Sci. Technol.
70
,
815
(
2010
).
4.
J.
Wang
and
Q.
Dou
, “
Crystallization behavior and optical and mechanical properties of isotactic polypropylene nucleated with rosin-based nucleating agents
,”
Polym. Int.
57
,
233
(
2008
).
5.
J. W.
Gibbs
, “
A method of geometrical representation of thermodynamic properties of substances by means of surfaces
,”
Trans. Connect. Acad. Arts Sci.
2
,
382
(
1873
);
W.
Ostwald
, “
Studien über die Bildung und Umwandlung fester Körper
,”
Z. Phys. Chem.
22
,
289
(
1897
);
M.
Volmer
and
A.
Weber
, “
Keimbildung in übersättigten Gebilden
,”
Z. Phys. Chem.
119
,
277
(
1926
);
R.
Becker
and
W.
Döring
, “
Kinetische Behandlung der Keimbildung in übersättigten Dämpfen
,”
Ann. Phys.
416
,
719
(
1935
).
6.
D. W.
Oxtoby
, “
Nucleation of first-order phase transitions
,”
Acc. Chem. Res.
31
,
91
(
1998
).
7.
S.
Karthika
,
T. K.
Radhakrishnan
, and
P.
Kalaichelvi
, “
A review of classical and nonclassical nucleation theories
,”
Cryst. Growth Des.
16
,
6663
(
2016
);
I. J.
Ford
, “
Statistical mechanics of nucleation: A review
,”
J. Mech. Eng. Sci.
218
,
883
(
2004
);
J.
Anwar
and
D.
Zahn
, “
Uncovering molecular processes in crystal nucleation and growth by using molecular simulation
,”
Angew. Chem., Int. Ed.
50
,
1996
(
2011
).
8.
J.
Merikanto
,
E.
Zapadinsky
,
A.
Lauri
, and
H.
Vehkamäki
, “
Origin of the failure of classical nucleation theory: Incorrect description of the smallest clusters
,”
Phys. Rev. Lett.
98
,
145702
(
2007
);
[PubMed]
W. G.
Courtney
, “
Remarks on homogeneous nucleation
,”
J. Chem. Phys.
35
,
2249
(
1961
);
E.
Ruckenstein
and
Y. S.
Djikaev
, “
Recent developments in the kinetic theory of nucleation
,”
Adv. Colloid Interface Sci.
118
,
51
(
2005
).
[PubMed]
9.
R. P.
Sear
, “
The non-classical nucleation of crystals: Microscopic mechanisms and applications to molecular crystals, ice and calcium carbonate
,”
Int. Mater. Rev.
57
,
328
(
2012
);
W. M.
Jacobs
,
A.
Reinhardt
, and
D.
Frenkel
, “
Communication: Theoretical prediction of free-energy landscapes for complex self-assembly
,”
J. Chem. Phys.
142
,
021101
(
2015
);
[PubMed]
W. M.
Jacobs
,
A.
Reinhardt
, and
D.
Frenkel
, “
Rational design of self-assembly pathways for complex multicomponent structures
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
6313
(
2015
).
[PubMed]
10.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
(
1977
).
11.
J.
Kästner
, “
Umbrella sampling
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
932
(
2011
).
12.
A.
Laio
and
F. L.
Gervasio
, “
Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science
,”
Rep. Prog. Phys.
71
,
126601
(
2008
).
13.
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Forward flux sampling-type schemes for simulating rare events: Efficiency analysis
,”
J. Chem. Phys.
124
,
194111
(
2006
);
[PubMed]
R. J.
Allen
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Simulating rare events in equilibrium or nonequilibrium stochastic systems
,”
J. Chem. Phys.
124
,
024102
(
2006
);
[PubMed]
C.
Valeriani
,
R. J.
Allen
,
M. J.
Morelli
,
D.
Frenkel
, and
P. R.
ten Wolde
, “
Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling
,”
J. Chem. Phys.
127
,
114109
(
2007
).
[PubMed]
14.
F.
Smallenburg
,
L.
Filion
, and
F.
Sciortino
, “
Erasing no-man’s land by thermodynamically stabilizing the liquid–liquid transition in tetrahedral particles
,”
Nat. Phys.
10
,
653
(
2014
);
[PubMed]
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
, “
Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint
,”
Annu. Rev. Phys. Chem.
67
,
159
(
2016
);
[PubMed]
A.
Dickson
and
A. R.
Dinner
, “
Enhanced sampling of nonequilibrium steady states
,”
Annu. Rev. Phys. Chem.
61
,
441
(
2010
).
[PubMed]
15.
W.
Hu
,
D.
Frenkel
, and
V. B. F.
Mathot
, “
Intramolecular nucleation model for polymer crystallization
,”
Macromolecules
36
,
8178
(
2003
).
16.
P.
Yi
and
G. C.
Rutledge
, “
Molecular simulation of crystal nucleation in n-octane melts
,”
J. Chem. Phys.
131
,
134902
(
2009
).
17.
P.
Yi
and
G. C.
Rutledge
, “
Molecular simulation of bundle-like crystal nucleation from n-eicosane melts
,”
J. Chem. Phys.
135
,
024903
(
2011
).
18.
P.
Yi
,
C. R.
Locker
, and
G. C.
Rutledge
, “
Molecular dynamics simulation of homogeneous crystal nucleation in polyethylene
,”
Macromolecules
46
,
4723
(
2013
).
19.
P.
Welch
and
M.
Muthukumar
, “
Molecular mechanisms of polymer crystallization from solution
,”
Phys. Rev. Lett.
87
,
218302
(
2001
).
20.
K.
Iyer
and
M.
Muthukumar
, “
Langevin dynamics simulation of crystallization of ring polymers
,”
J. Chem. Phys.
148
,
244904
(
2018
).
21.
K.
Iyer
,
M.
Margossian
, and
M.
Muthukumar
, “
Interlude of metastability in the melting of polymer crystals
,”
J. Chem. Phys.
151
,
124903
(
2019
).
22.
J. I.
Siepmann
and
D.
Frenkel
, “
Configurational bias Monte Carlo: A new sampling scheme for flexible chains
,”
Mol. Phys.
75
,
59
(
1992
);
S.
Consta
,
N. B.
Wilding
,
D.
Frenkel
, and
Z.
Alexandrowicz
, “
Recoil growth: An efficient simulation method for multi-polymer systems
,”
J. Chem. Phys.
110
,
3220
(
1999
);
A.
Cumberworth
,
A.
Reinhardt
, and
D.
Frenkel
, “
Lattice models and Monte Carlo methods for simulating DNA origami self-assembly
,”
J. Chem. Phys.
149
,
234905
(
2018
).
[PubMed]
23.
C. J.
Farrell
,
A.
Keller
,
M. J.
Miles
, and
D. P.
Pope
, “
Conformational relaxation time in polymer solutions by elongational flow experiments: 1. Determination of extensional relaxation time and its molecular weight dependence
,”
Polymer
21
,
1292
(
1980
).
24.
J. K.
Jackson
,
M. E.
De Rosa
, and
H. H.
Winter
, “
Molecular weight dependence of relaxation time spectra for the entanglement and flow behavior of monodisperse linear flexible polymers
,”
Macromolecules
27
,
2426
(
1994
).
25.
S. K.
Ghosh
,
M.
Hikosaka
, and
A.
Toda
, “
Power law of nucleation rate of folded-chain single crystals of polyethylene
,”
Colloid Polym. Sci.
279
,
382
(
2001
).
26.
S.
Umemoto
,
R.
Hayashi
,
R.
Kawano
,
T.
Kikutani
, and
N.
Okui
, “
Molecular weight dependence of primary nucleation rate of poly(ethylene succinate)
,”
J. Macromol. Sci., Part B
42
,
421
(
2003
).
27.
M.
Nishi
,
M.
Hikosaka
,
S. K.
Ghosh
,
A.
Toda
, and
K.
Yamada
, “
Molecular weight dependence of primary nucleation rate of polyethylene I. An extended chain single crystal
,”
Polym. J.
31
,
749
(
1999
).
28.
D.
Reith
,
H.
Meyer
, and
F.
Müller-Plathe
, “
Mapping atomistic to coarse-grained polymer models using automatic simplex optimization to fit structural properties
,”
Macromolecules
34
,
2335
(
2001
).
29.
H.
Meyer
and
F.
Müller-Plathe
, “
Formation of chain-folded structures in supercooled polymer melts
,”
J. Chem. Phys.
115
,
7807
(
2001
);
H.
Meyer
and
F.
Müller-Plathe
, “
Formation of chain-folded structures in supercooled polymer melts examined by MD simulations
,”
Macromolecules
35
,
1241
(
2002
).
30.
C.
Luo
and
J.-U.
Sommer
, “
Coding coarse grained polymer model for LAMMPS and its application to polymer crystallization
,”
Comput. Phys. Commun.
180
,
1382
(
2009
).
31.
C.
Luo
and
J.-U.
Sommer
, “
Coexistence of melting and growth during heating of a semicrystalline polymer
,”
Phys. Rev. Lett.
102
,
147801
(
2009
).
32.
J.-U.
Sommer
and
C.
Luo
, “
Molecular dynamics simulations of semicrystalline polymers: Crystallization, melting, and reorganization
,”
J. Polym. Sci., Part B: Polym. Phys.
48
,
2222
(
2010
).
33.
C.
Luo
and
J.-U.
Sommer
, “
Frozen topology: Entanglements control nucleation and crystallization in polymers
,”
Phys. Rev. Lett.
112
,
195702
(
2014
).
34.

Even though PVA has both monoclinic and orthorhombic polymorphs,75 the coarse-graining results in a hexagonal crystalline polymorph.

35.
V.
Triandafilidi
,
J.
Rottler
, and
S. G.
Hatzikiriakos
, “
Molecular dynamics simulations of monodisperse/bidisperse polymer melt crystallization
,”
J. Polym. Sci., Part B: Polym. Phys.
54
,
2318
(
2016
).
36.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
, “
Hybrid Monte Carlo
,”
Phys. Lett. B
195
,
216
(
1987
);
D. W.
Heermann
,
P.
Nielaba
, and
M.
Rovere
, “
Hybrid molecular dynamics
,”
Comput. Phys. Commun.
60
,
311
(
1990
);
B.
Mehlig
,
D. W.
Heermann
, and
B. M.
Forrest
, “
Hybrid Monte Carlo method for condensed-matter systems
,”
Phys. Rev. B
45
,
679
(
1992
).
37.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
(
1953
).
38.
H. E. A.
Huitema
and
J. P.
van der Eerden
, “
Can Monte Carlo simulation describe dynamics? A test on Lennard-Jones systems
,”
J. Chem. Phys.
110
,
3267
(
1999
).
39.
A.
Reinhardt
,
J. P. K.
Doye
,
E. G.
Noya
, and
C.
Vega
, “
Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water
,”
J. Chem. Phys.
137
,
194504
(
2012
).
40.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
41.
C.
Luo
and
J.-U.
Sommer
, “
Disentanglement of linear polymer chains toward unentangled crystals
,”
ACS Macro Lett.
2
,
31
(
2013
).
42.
J.
Wedekind
,
D.
Reguera
, and
R.
Strey
, “
Finite-size effects in simulations of nucleation
,”
J. Chem. Phys.
125
,
214505
(
2006
).
43.
R.
Eppenga
and
D.
Frenkel
, “
Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets
,”
Mol. Phys.
52
,
1303
(
1984
).
44.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Elsevier Academic Press
,
London
,
2002
).
45.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
);
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
46.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
);
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
(
1994
);
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
47.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
(
1983
).
48.
P. R.
ten Wolde
,
M. J.
Ruiz-Montero
, and
D.
Frenkel
, “
Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling
,”
J. Chem. Phys.
104
,
9932
(
1996
).
49.
P.
Tan
,
N.
Xu
, and
L.
Xu
, “
Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization
,”
Nat. Phys.
10
,
73
(
2014
).
50.
X.
Tang
,
J.
Yang
,
T.
Xu
,
F.
Tian
,
C.
Xie
, and
L.
Li
, “
Local structure order assisted two-step crystal nucleation in polyethylene
,”
Phys. Rev. Mater.
1
,
073401
(
2017
).
51.
D. A.
Nicholson
and
G. C.
Rutledge
, “
Molecular simulation of flow-enhanced nucleation in n-eicosane melts under steady shear and uniaxial extension
,”
J. Chem. Phys.
145
,
244903
(
2016
).
52.
C.
Luo
and
J.-U.
Sommer
, “
Growth pathway and precursor states in single lamellar crystallization: MD simulations
,”
Macromolecules
44
,
1523
(
2011
).
53.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
,
11085
(
1998
).
54.
A.
Reinhardt
and
D.
Frenkel
, “
Numerical evidence for nucleated self-assembly of DNA brick structures
,”
Phys. Rev. Lett.
112
,
238103
(
2014
).
55.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
New York
,
1987
).
56.
J. S.
van Duijneveldt
and
D.
Frenkel
, “
Computer simulation study of free energy barriers in crystal nucleation
,”
J. Chem. Phys.
96
,
4655
(
1992
).
57.
S.
Auer
and
D.
Frenkel
, “
Numerical prediction of absolute crystallization rates in hard-sphere colloids
,”
J. Chem. Phys.
120
,
3015
(
2004
).
58.
M.
Mezei
, “
Adaptive umbrella sampling: Self-consistent determination of the non-Boltzmann bias
,”
J. Comput. Phys.
68
,
237
(
1987
).
59.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
(
1992
).
60.
M. R.
Shirts
and
J. D.
Chodera
, “
Statistically optimal analysis of samples from multiple equilibrium states
,”
J. Chem. Phys.
129
,
124105
(
2008
).
61.
J. P.
Armistead
and
J. D.
Hoffman
, “
Direct evidence of regimes I, II, and III in linear polyethylene fractions as revealed by spherulite growth rates
,”
Macromolecules
35
,
3895
(
2002
).
62.
A.
Reinhardt
and
J. P. K.
Doye
, “
Note: Homogeneous TIP4P/2005 ice nucleation at low supercooling
,”
J. Chem. Phys.
139
,
096102
(
2013
).
63.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
, “
New method to analyze simulations of activated processes
,”
J. Chem. Phys.
126
,
134103
(
2007
).
64.
J. B.
Zeldovich
, “
On the theory of new phase formation; cavitation
,”
Acta Physicochim. URSS
18
,
1
(
1943
).
65.
S.
Auer
and
D.
Frenkel
, “
Prediction of absolute crystal-nucleation rate in hard-sphere colloids
,”
Nature
409
,
1020
(
2001
).
66.
D.
Frenkel
, “
Simulations: The dark side
,”
Eur. Phys. J. Plus
128
,
10
(
2013
).
67.
X.
Tang
,
W.
Chen
, and
L.
Li
, “
The tough journey of polymer crystallization: Battling with chain flexibility and connectivity
,”
Macromolecules
52
,
3575
(
2019
).
68.
J. A.
Martins
and
N. M.
Micaelo
, “
Short-range order in polyethylene melts: Identification and characterization
,”
Macromolecules
46
,
7977
(
2013
).
69.
S. K.
Ghosh
,
M.
Hikosaka
,
A.
Toda
,
S.
Yamazaki
, and
K.
Yamada
, “
Power law of molecular weight of the nucleation rate of folded chain crystals of polyethylene
,”
Macromolecules
35
,
6985
(
2002
).
70.
D.
Auhl
,
J.
Ramirez
,
A. E.
Likhtman
,
P.
Chambon
, and
C.
Fernyhough
, “
Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights
,”
J. Rheol.
52
,
801
(
2008
).
71.
M.
Abdel-Goad
,
W.
Pyckhout-Hintzen
,
S.
Kahle
,
J.
Allgaier
,
D.
Richter
, and
L. J.
Fetters
, “
Rheological properties of 1,4-polyisoprene over a large molecular weight range
,”
Macromolecules
37
,
8135
(
2004
).
72.
B.
Kresse
,
M.
Hofmann
,
A. F.
Privalov
,
N.
Fatkullin
,
F.
Fujara
, and
E. A.
Rössler
, “
All polymer diffusion regimes covered by combining field-cycling and field-gradient 1H NMR
,”
Macromolecules
48
,
4491
(
2015
).
73.
S.
Wang
,
S.
Yuan
,
K.
Wang
,
W.
Chen
,
K.
Yamada
,
D.
Barkley
,
T.
Koga
,
Y.-l.
Hong
, and
T.
Miyoshi
, “
Intramolecular and intermolecular packing in polymer crystallization
,”
Macromolecules
52
,
4739
(
2019
);
Y.-l.
Hong
,
T.
Koga
, and
T.
Miyoshi
, “
Chain trajectory and crystallization mechanism of a semicrystalline polymer in melt- and solution-grown crystals as studied using 13C–13C double-quantum NMR
,”
Macromolecules
48
,
3282
(
2015
).
74.
X.
Tang
,
F.
Tian
,
T.
Xu
,
L.
Li
, and
A.
Reinhardt
, “
Research data supporting ‘Numerical calculation of free-energy barriers for entangled polymer nucleation’ [Dataset]
” (
2020
).
75.
C. W.
Bunn
, “
Crystal structure of polyvinyl alcohol
,”
Nature
161
,
929
(
1948
);
B. G.
Colvin
, “
Crystal structure of polyvinyl alcohol
,”
Nature
248
,
756
(
1974
).
You do not currently have access to this content.