Ordering of different chalcogens, S, Se, and Te, on Au(111) exhibit broad similarities but also some distinct features, which must reflect subtle differences in relative values of the long-range pair and many-body lateral interactions between adatoms. We develop lattice-gas (LG) models within a cluster expansion framework, which includes about 50 interaction parameters. These LG models are developed based on density functional theory (DFT) analysis of the energetics of key adlayer configurations in combination with the Monte Carlo (MC) simulation of the LG models to identify statistically relevant adlayer motifs, i.e., model development is based entirely on theoretical considerations. The MC simulation guides additional DFT analysis and iterative model refinement. Given their complexity, development of optimal models is also aided by strategies from supervised machine learning. The model for S successfully captures ordering motifs over a broader range of coverage than achieved by previous models, and models for Se and Te capture the features of ordering, which are distinct from those for S. More specifically, the modeling for all three chalcogens successfully explains the linear adatom rows (also subtle differences between them) observed at low coverages of ∼0.1 monolayer. The model for S also leads to a new possible explanation for the experimentally observed phase with a (5 × 5)-type low energy electron diffraction (LEED) pattern at 0.28 ML and to predictions for LEED patterns that would be observed with Se and Te at this coverage.

1.
L. V.
Romashov
and
V. P.
Ananikov
,
Chem. - Eur. J.
19
,
17640
(
2013
).
2.
M.
Lee
,
S.
Kang
,
M.
Oh
,
J.
Chae
,
J.
Yu
, and
Y.
Kuk
,
Surf. Sci.
685
,
19
(
2019
).
3.
K.
Schouteden
,
J.
Debehets
,
D.
Muzychenko
,
Z.
Li
,
J. W.
Seo
, and
C.
Van Haesendonck
,
J. Phys.: Condens. Matter
29
,
125001
(
2017
).
4.
H.
Walen
,
D.-J.
Liu
,
J.
Oh
,
H.
Lim
,
J. W.
Evans
,
Y.
Kim
, and
P. A.
Thiel
,
J. Chem. Phys.
143
,
014704
(
2015
).
5.
M.
Yu
,
H.
Ascolani
,
G.
Zampieri
,
D. P.
Woodruff
,
C. J.
Satterley
,
R. G.
Jones
, and
V. R.
Dhanak
,
J. Phys. Chem. C
111
,
10904
(
2007
).
6.
G. M.
McGuirk
,
H.
Shin
,
M.
Caragiu
,
S.
Ash
,
P. K.
Bandyopadhyay
,
R. H.
Prince
, and
R. D.
Diehl
,
Surf. Sci.
610
,
42
(
2013
).
7.
M. M.
Biener
,
J.
Biener
, and
C. M.
Friend
,
Langmuir
21
,
1668
(
2005
).
8.
B. K.
Min
,
A. R.
Alemozafar
,
M. M.
Biener
,
J.
Biener
, and
C. M.
Friend
,
Top. Catal.
36
,
77
(
2005
).
9.
M.
Yu
,
D. P.
Woodruff
,
C. J.
Satterley
,
R. G.
Jones
, and
V. R.
Dhanak
,
J. Phys. Chem. C
111
,
3152
(
2007
).
10.
J. A.
Rodriguez
,
J.
Dvorak
,
T.
Jirsak
,
G.
Liu
,
J.
Hrbek
,
Y.
Aray
, and
C.
González
,
J. Am. Chem. Soc.
125
,
276
(
2003
).
11.
C.
Wagner
,
J. Chem. Phys.
21
,
1819
(
1953
).
12.
D.
Detry
,
J.
Drowart
,
P.
Goldfinger
,
H.
Keller
, and
H.
Rickert
,
Z. Phys. Chem.
55
,
314
(
1967
).
13.
H.
Walen
,
D.-J.
Liu
,
J.
Oh
,
H. J.
Yang
,
Y.
Kim
, and
P. A.
Thiel
,
J. Phys. Chem. C
119
,
21000
(
2015
).
14.
H.
Walen
,
D.-J.
Liu
,
J.
Oh
,
H. J.
Yang
,
Y.
Kim
, and
P. A.
Thiel
,
ChemPhysChem
17
,
2137
(
2016
).
15.
H.
Walen
,
D.-J.
Liu
,
J.
Oh
,
H. J.
Yang
,
Y.
Kim
, and
P. A.
Thiel
,
Phys. Chem. Chem. Phys.
18
,
4891
(
2016
).
16.
D.-J.
Liu
and
P. A.
Thiel
,
J. Chem. Phys.
148
,
124706
(
2018
).
17.
P. M.
Spurgeon
,
D. J.
Liu
,
J.
Oh
,
Y.
Kim
, and
P. A.
Thiel
,
Sci. Rep.
9
,
19842
(
2019
).
18.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
19.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
20.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
21.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
22.
23.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
24.
S.
Mankefors
,
A.
Grigoriev
, and
G.
Wendin
,
Nanotechnology
14
,
849
(
2003
).
25.
J. S.
Boschen
,
J.
Lee
,
T. L.
Windus
,
J. W.
Evans
,
P. A.
Thiel
, and
D.-J.
Liu
,
J. Chem. Phys.
145
,
164312
(
2016
).
26.
J.
Lee
,
J. S.
Boschen
,
T. L.
Windus
,
P. A.
Thiel
, and
D.-J.
Liu
,
J. Phys. Chem. C
121
,
3870
(
2017
).
27.
P. N.
Abufager
,
G.
Zampieri
,
K.
Reuter
,
M. L.
Martiarena
, and
H. F.
Busnengo
,
J. Phys. Chem. C
118
,
290
(
2014
).
28.
V. I.
Marchenko
and
P. A.
Ya
,
Sov. Phys. JETP
52
,
129
(
1980
).
29.
K. H.
Lau
and
W.
Kohn
,
Surf. Sci.
75
,
69
(
1978
).
30.
31.
P.
Hyldgaard
and
M.
Persson
,
J. Phys.: Condens. Matter
12
,
L13
(
2000
).
32.
W.
Kappus
,
Z. Phys. B: Condens. Matter Quanta
29
,
239
(
1978
).
33.
G.
Collinge
,
K.
Groden
,
C.
Stampfl
, and
J.-S.
McEwen
,
J. Phys. Chem. C
124
,
2923
(
2019
).
34.
T.
Mueller
,
A. G.
Kusne
, and
R.
Ramprasad
, in
Reviews of Computational Chemistry
, edited by
A. R.
Parrill
and
K. B.
Lipkowitz
(
Wiley
,
New York
,
2016
).
35.
T.
Mueller
and
G.
Ceder
,
Phys. Rev. B
80
,
024103
(
2009
).
36.
37.
I. T.
Jolliffe
,
Principal Component Analysis
(
Springer
,
New York, NY
,
2002
).
38.
T. L.
Einstein
and
R.
Sathiyanarayanan
, in
Nanophenomena at Surfaces
, edited by
M.
Michailov
(
Springer-Verlag
,
Berlin, Heidelberg,
2011
), p.
19
.
39.
P.
Hyldgaard
and
T. L.
Einstein
,
Europhys. Lett.
59
,
265
(
2002
).

Supplementary Material

You do not currently have access to this content.