We develop a phenomenological Landau–de Gennes (LdG) theory for lyotropic colloidal suspensions of bent rods using a Q-tensor expansion of the chemical-potential dependent grand potential. In addition, we introduce a bend flexoelectric term, coupling the polarization and the divergence of the Q-tensor, to study the stability of uniaxial (N), twist-bend (NTB), and splay-bend (NSB) nematic phases of colloidal bent rods. We first show that a mapping can be found between the LdG theory and the Oseen–Frank theory. By breaking the degeneracy between the splay and bend elastic constants, we find that the LdG theory predicts either an NNTBNSB or an NNSBNTB phase sequence upon increasing the particle concentration. Finally, we employ our theory to study the first-order NNTB phase transition, for which we find that K33 as well as its renormalized version K33eff remain positive at the transition, whereas K33eff vanishes at the nematic spinodal. We connect these findings to recent simulation results.

1.
A.
Jákli
,
O. D.
Lavrentovich
, and
J. V.
Selinger
, “
Physics of liquid crystals of bent-shaped molecules
,”
Rev. Mod. Phys.
90
,
045004
(
2018
).
2.
R. B.
Meyer
, “
Piezoelectric effects in liquid crystals
,”
Phys. Rev. Lett.
22
,
918
921
(
1969
).
3.
I.
Dozov
, “
On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules
,”
Europhys. Lett.
56
,
247
253
(
2001
).
4.
R. B.
Meyer
, “
Structural problems in liquid crystal physics
,” in
Molecular Fluids
, Les Houches Summer School in Theoretical Physics, edited by
R.
Balian
and
G.
Weill
(
Gordon & Breach
,
New York
,
1976
), pp.
271
343
.
5.
S.
Dhakal
and
J. V.
Selinger
, “
Statistical mechanics of splay flexoelectricity in nematic liquid crystals
,”
Phys. Rev. E
81
,
031704
(
2010
).
6.
S. M.
Shamid
,
S.
Dhakal
, and
J. V.
Selinger
, “
Statistical mechanics of bend flexoelectricity and the twist-bend phase in bent-core liquid crystals
,”
Phys. Rev. E
87
,
052503
(
2013
).
7.
Z.
Parsouzi
,
S. M.
Shamid
,
V.
Borshch
,
P. K.
Challa
,
A. R.
Baldwin
,
M. G.
Tamba
,
C.
Welch
,
G. H.
Mehl
,
J. T.
Gleeson
,
A.
Jakli
,
O. D.
Lavrentovich
,
D. W.
Allender
,
J. V.
Selinger
, and
S.
Sprunt
, “
Fluctuation modes of a twist-bend nematic liquid crystal
,”
Phys. Rev. X
6
,
021041
(
2016
).
8.
S. M.
Shamid
,
D. W.
Allender
, and
J. V.
Selinger
, “
Predicting a polar analog of chiral blue phases in liquid crystals
,”
Phys. Rev. Lett.
113
,
237801
(
2014
).
9.
L.
Longa
and
G.
Pająk
, “
Modulated nematic structures induced by chirality and steric polarization
,”
Phys. Rev. E
93
,
040701
(
2016
).
10.
L.
Longa
and
W.
Tomczyk
, “
Twist-bend nematic phase in the presence of molecular chirality
,”
Liq. Cryst.
45
,
2074
2085
(
2018
).
11.
G.
Pająk
,
L.
Longa
, and
A.
Chrzanowska
, “
Nematic twist–bend phase in an external field
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E10303
E10312
(
2018
).
12.
M.
Čopič
and
A.
Mertelj
, “
Q-tensor model of twist-bend and splay nematic phases
,”
Phys. Rev. E
101
,
022704
(
2020
).
13.
E. G.
Virga
, “
Double-well elastic theory for twist-bend nematic phases
,”
Phys. Rev. E
89
,
052502
(
2014
).
14.
G.
Barbero
,
L. R.
Evangelista
,
M. P.
Rosseto
,
R. S.
Zola
, and
I.
Lelidis
, “
Elastic continuum theory: Towards understanding of the twist-bend nematic phases
,”
Phys. Rev. E
92
,
030501
(
2015
).
15.
R. S.
Zola
,
G.
Barbero
,
I.
Lelidis
,
M. P.
Rosseto
, and
L. R.
Evangelista
, “
A continuum description for cholesteric and nematic twist-bend phases based on symmetry considerations
,”
Liq. Cryst.
44
,
24
30
(
2017
).
16.
I.
Lelidis
and
G.
Barbero
, “
Nematic phases with spontaneous splay-bend deformation: Standard elastic description
,”
Liq. Cryst.
43
,
208
215
(
2016
).
17.
E. I.
Kats
and
V. V.
Lebedev
, “
Landau theory for helical nematic phases
,”
JETP Lett.
100
,
110
113
(
2014
).
18.
T. C.
Lubensky
and
L.
Radzihovsky
, “
Theory of bent-core liquid-crystal phases and phase transitions
,”
Phys. Rev. E
66
,
031704
(
2002
).
19.
C.
Greco
and
A.
Ferrarini
, “
Entropy-driven chiral order in a system of achiral bent particles
,”
Phys. Rev. Lett.
115
,
147801
(
2015
).
20.
C.
Greco
,
G. R.
Luckhurst
, and
A.
Ferrarini
, “
Molecular geometry, twist-bend nematic phase and unconventional elasticity: A generalised Maier–Saupe theory
,”
Soft Matter
10
,
9318
9323
(
2014
).
21.
A.
Ferrarini
, “
The twist-bend nematic phase: Molecular insights from a generalised Maier–Saupe theory
,”
Liq. Cryst.
44
,
45
57
(
2017
).
22.
W.
Tomczyk
,
G.
Pająk
, and
L.
Longa
, “
Twist-bend nematic phases of bent-shaped biaxial molecules
,”
Soft Matter
12
,
7445
7452
(
2016
).
23.
A.
Matsuyama
, “
Director-pitch coupling-induced twist-bend nematic phase
,”
J. Phys. Soc. Jpn.
85
,
114606
(
2016
).
24.
A.
Matsuyama
, “
Twist-bend nematic phases in binary mixtures of banana-shaped liquid crystalline molecules
,”
Liq. Cryst.
45
,
607
624
(
2018
).
25.
A.
Matsuyama
, “
Cholesteric-isotropic phase transitions of banana-shaped liquid crystalline molecules
,”
Mol. Cryst. Liq. Cryst.
683
,
3
13
(
2019
).
26.
M. A.
Osipov
and
G.
Pająk
, “
Polar interactions between bent–core molecules as a stabilising factor for inhomogeneous nematic phases with spontaneous bend deformations
,”
Liq. Cryst.
44
,
58
67
(
2017
).
27.
M.
Cestari
and
A.
Ferrarini
, “
Curvature elasticity of nematic liquid crystals: Simply a matter of molecular shape? Insights from atomistic modeling
,”
Soft Matter
5
,
3879
3887
(
2009
).
28.
M.
Cestari
,
E.
Frezza
,
A.
Ferrarini
, and
G. R.
Luckhurst
, “
Crucial role of molecular curvature for the bend elastic and flexoelectric properties of liquid crystals: Mesogenic dimers as a case study
,”
J. Mater. Chem.
21
,
12303
12308
(
2011
).
29.
C.
Greco
,
A.
Marini
,
E.
Frezza
, and
A.
Ferrarini
, “
From the molecular structure to spectroscopic and material properties: Computational investigation of a bent-core nematic liquid crystal
,”
ChemPhysChem
15
,
1336
1344
(
2014
).
30.
P.
De Gregorio
,
E.
Frezza
,
C.
Greco
, and
A.
Ferrarini
, “
Density functional theory of nematic elasticity: Softening from the polar order
,”
Soft Matter
12
,
5188
5198
(
2016
).
31.
Y.
Yang
,
G.
Chen
,
L. J.
Martinez-Miranda
,
H.
Yu
,
K.
Liu
, and
Z.
Nie
, “
Synthesis and liquid-crystal behavior of bent colloidal silica rods
,”
J. Am. Chem. Soc.
138
,
68
71
(
2016
).
32.
Y.
Yang
,
H.
Pei
,
G.
Chen
,
K. T.
Webb
,
L. J.
Martinez-Miranda
,
I. K.
Lloyd
,
Z.
Lu
,
K.
Liu
, and
Z.
Nie
, “
Phase behaviors of colloidal analogs of bent-core liquid crystals
,”
Sci. Adv.
4
,
eaas8829
(
2018
).
33.
F.
Hagemans
,
R. K.
Pujala
,
D. S.
Hotie
,
D. M. E.
Thies-Weesie
,
D. A. M.
De Winter
,
J. D.
Meeldijk
,
A.
Van Blaaderen
, and
A.
Imhof
, “
Shaping silica rods by tuning hydrolysis and condensation of silica precursors
,”
Chem. Mater.
31
,
521
531
(
2019
).
34.
C.
Fernández-Rico
 et al, “
Shaping colloidal bananas to reveal biaxial, splay-bend nematic and smectic phases
” (unpublished).
35.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
36.
M.
Chiappini
,
T.
Drwenski
,
R.
van Roij
, and
M.
Dijkstra
, “
Biaxial, twist-bend, and splay-bend nematic phases of banana-shaped particles revealed by lifting the “smectic blanket”
,”
Phys. Rev. Lett.
123
,
068001
(
2019
).
37.
A.
Mertelj
,
L.
Cmok
,
N.
Sebastián
,
R. J.
Mandle
,
R. R.
Parker
,
A. C.
Whitwood
,
J. W.
Goodby
, and
M.
Čopič
, “
Splay nematic phase
,”
Phys. Rev. X
8
,
041025
(
2018
).
38.
N.
Chaturvedi
and
R. D.
Kamien
, “
Mechanisms to splay-bend nematic phases
,”
Phys. Rev. E
100
,
022704
(
2019
).
39.
P.-G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford University Press
,
1993
).
40.
P. G. D.
Gennes
, “
Short range order effects in the isotropic phase of nematics and cholesterics
,”
Mol. Cryst. Liq. Cryst.
12
,
193
214
(
1971
).
41.
E. F.
Gramsbergen
,
L.
Longa
, and
W. H.
de Jeu
, “
Landau theory of the nematic-isotropic phase transition
,”
Phys. Rep.
135
,
195
257
(
1986
).
42.
L.
Longa
,
D.
Monselesan
, and
H.-R.
Trebin
, “
An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals
,”
Liq. Cryst.
2
,
769
796
(
1987
).
43.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
, “
Phase transitions in lyotropic colloidal and polymer liquid crystals
,”
Rep. Prog. Phys.
55
,
1241
1309
(
1992
).
44.
J. C.
Everts
,
M. T. J. J. M.
Punter
,
S.
Samin
,
P.
van der Schoot
, and
R.
van Roij
, “
A Landau-de Gennes theory for hard colloidal rods: Defects and tactoids
,”
J. Chem. Phys.
144
,
194901
(
2016
).
45.
R.
Wittkowski
,
H.
Löwen
, and
H. R.
Brand
, “
Derivation of a three-dimensional phase-field-crystal model for liquid crystals from density functional theory
,”
Phys. Rev. E
82
,
031708
(
2010
).
46.
K.
Schiele
and
S.
Trimper
, “
On the elastic constants of a nematic liquid crystal
,”
Phys. Status Solidi B
118
,
267
274
(
1983
).
47.
C. W.
Oseen
, “
The theory of liquid crystals
,”
Trans. Faraday Soc.
29
,
883
899
(
1933
).
48.
F. C.
Frank
, “
I. Liquid crystals. On the theory of liquid crystals
,”
Discuss. Faraday Soc.
25
,
19
28
(
1958
).
49.
J. C.
Tolédano
and
P.
Tolédano
,
The Landau Theory of Phase Transitions
(
World Scientific
,
1987
).
50.
R.
van Roij
, “
The isotropic and nematic liquid crystal phase of colloidal rods
,”
Eur. J. Phys.
26
,
S57
S67
(
2005
).
51.
R. F.
Kayser
and
H. J.
Raveché
, “
Bifurcation in Onsager’s model of the isotropic-nematic transition
,”
Phys. Rev. A
17
,
2067
2072
(
1978
).
52.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
, “
Optimization by simulated annealing
,”
Science
220
,
671
680
(
1983
).
You do not currently have access to this content.