Many of the non-adiabatic processes in the condensed phase are affected by the interaction with the environment, as exemplified by Marcus theory. However, non-adiabatic molecular dynamics simulations with explicitly including the environment are computationally expensive because of the extended system size, suggesting the need for an efficient scheme applicable to huge systems. In this work, time-derivative non-adiabatic coupling (TDNAC) calculation algorithms were developed in the framework of the divide-and-conquer (DC) time-dependent (TD) density-functional tight-binding (DFTB) method, which is an extension of the TD-DFTB for larger systems based on the fragmentation-based DC scheme. The developed algorithms were incorporated into a fewest-switches trajectory surface hopping (FSSH) routine. The calculated TDNAC and the FSSH results were sufficiently accurate compared to the conventional TD-DFTB results. Use of the DC-TD-DFTB provided a significant reduction in the central processing unit (CPU) time vs that of the TD-DFTB, where the CPU time remained constant irrespective of the total system size. It was also confirmed that the present method is not only efficient but also improves the numerical stability of TDNAC calculations.

1.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
2.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
3.
E.
Tapavicza
,
I.
Tavernelli
, and
U.
Rothlisberger
,
Phys. Rev. Lett.
98
,
023001
(
2007
).
4.
U.
Werner
,
R.
Mitrić
,
T.
Suzuki
, and
V.
Bonačić-Koutecký
,
Chem. Phys.
349
,
319
(
2008
).
5.
M.
Barbatti
,
J.
Pittner
,
M.
Pederzoli
,
U.
Werner
,
R.
Mitrić
,
V.
Bonačić-Koutecký
, and
H.
Lischka
,
Chem. Phys.
375
,
26
(
2010
).
6.
D.
Fazzi
,
M.
Barbatti
, and
W.
Thiel
,
Phys. Chem. Chem. Phys.
17
,
7787
(
2015
).
7.
D.
Fazzi
,
M.
Barbatti
, and
W.
Thiel
,
J. Am. Chem. Soc.
138
,
4502
(
2016
).
8.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
,
J. Chem. Phys.
137
,
22A545
(
2012
).
9.
C.
Zhu
,
H.
Kamisaka
, and
H.
Nakamura
,
J. Chem. Phys.
116
,
3234
(
2002
).
10.
W. C.
Chung
,
S.
Nanbu
, and
T.
Ishida
,
J. Phys. Chem. B
116
,
8009
(
2012
).
11.
L.
Yu
,
C.
Xu
,
Y.
Lei
,
C.
Zhu
, and
Z.
Wen
,
Phys. Chem. Chem. Phys.
16
,
25883
(
2014
).
12.
K.
Hanasaki
,
M.
Kanno
,
T. A.
Niehaus
, and
H.
Kono
,
J. Chem. Phys.
149
,
244117
(
2018
).
13.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
14.
M.
Barbatti
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
620
(
2011
).
15.
T. R.
Nelson
,
A. J.
White
,
J. A.
Bjorgaard
,
A. E.
Sifain
,
Y.
Zhang
,
B.
Nebgen
,
S.
Fernandez-Alberti
,
D.
Mozyrsky
,
A. E.
Roitberg
, and
S.
Tretiak
,
Chem. Rev.
120
,
2215
(
2020
).
16.
R.
Mitrić
,
U.
Werner
,
M.
Wohlgemuth
,
G.
Seifert
, and
V.
Bonačić-Koutecký
,
J. Phys. Chem. A
113
,
12700
(
2009
).
17.
S.
Pal
,
D. J.
Trivedi
,
A. V.
Akimov
,
B.
Aradi
,
T.
Frauenheim
, and
O. V.
Prezhdo
,
J. Chem. Theory Comput.
12
,
1436
(
2016
).
18.
A.
Humeniuk
and
R.
Mitrić
,
Comput. Phys. Commun.
221
,
174
(
2017
).
19.
L.
Stojanović
,
S. G.
Aziz
,
R. H.
Hilal
,
F.
Plasser
,
T. A.
Niehaus
, and
M.
Barbatti
,
J. Chem. Theory Comput.
13
,
5846
(
2017
).
20.
T. A.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
,
Phys. Rev. B
63
,
085108
(
2001
).
21.
W. M. C.
Foulkes
and
R.
Haydock
,
Phys. Rev. B
39
,
12520
(
1989
).
22.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
23.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
24.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
25.
E.
Titov
,
A.
Humeniuk
, and
R.
Mitrić
,
Phys. Chem. Chem. Phys.
20
,
25995
(
2018
).
26.
E.
Posenitskiy
,
M.
Rapacioli
,
B.
Lepetit
,
D.
Lemoine
, and
F.
Spiegelman
,
Phys. Chem. Chem. Phys.
21
,
12139
(
2019
).
27.
F.
Alkan
and
C. M.
Aikens
,
J. Phys. Chem. C
122
,
23639
(
2018
).
28.
N.
Komoto
,
T.
Yoshikawa
,
J.
Ono
,
Y.
Nishimura
, and
H.
Nakai
,
J. Chem. Theory Comput.
15
,
1719
(
2019
).
29.
W.
Yang
,
Phys. Rev. Lett.
66
,
1438
(
1991
).
30.
W.
Yang
and
T.-S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
31.
M.
Kobayashi
and
H.
Nakai
,
Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
, edited by
R.
Zaleśny
,
M. G.
Papadopoulos
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer, Dordrecht
,
2011
), pp.
97
127
.
32.
M.
Kobayashi
and
H.
Nakai
,
Phys. Chem. Chem. Phys.
14
,
7629
(
2012
).
33.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
34.
M. A.
Collins
and
R. P. A.
Bettens
,
Chem. Rev.
115
,
5607
(
2015
).
35.
K.
Raghavachari
and
A.
Saha
,
Chem. Rev.
115
,
5643
(
2015
).
36.
J. M.
Herbert
,
J. Chem. Phys.
151
,
170901
(
2019
).
37.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
38.
D. G.
Fedorov
and
K.
Kitaura
,
J. Phys. Chem. A
111
,
6904
(
2007
).
39.
D. G.
Fedorov
,
T.
Nagata
, and
K.
Kitaura
,
Phys. Chem. Chem. Phys.
14
,
7562
(
2012
).
40.
Y.
Nishimoto
,
D. G.
Fedorov
, and
S.
Irle
,
J. Chem. Theory Comput.
10
,
4801
(
2014
).
41.
B.
Nebgen
and
O. V.
Prezhdo
,
J. Phys. Chem. A
120
,
7205
(
2016
).
42.
T. J.
Giese
,
H.
Chen
,
T.
Dissanayake
,
G. M.
Giambaşu
,
H.
Heldenbrand
,
M.
Huang
,
E. R.
Kuechler
,
T.-S.
Lee
,
M. T.
Panteva
,
B. K.
Radak
, and
D. M.
York
,
J. Chem. Theory Comput.
9
,
1417
(
2013
).
43.
T. J.
Giese
,
H.
Chen
,
M.
Huang
, and
D. M.
York
,
J. Chem. Theory Comput.
10
,
1086
(
2014
).
44.
T. J.
Giese
,
M.
Huang
,
H.
Chen
, and
D. M.
York
,
Acc. Chem. Res.
47
,
2812
(
2014
).
45.
T.
Akama
,
M.
Kobayashi
, and
H.
Nakai
,
J. Comput. Chem.
28
,
2003
(
2007
).
46.
M.
Kobayashi
,
T.
Yoshikawa
, and
H.
Nakai
,
Chem. Phys. Lett.
500
,
172
(
2010
).
47.
M.
Kobayashi
,
T.
Akama
, and
H.
Nakai
,
J. Chem. Phys.
125
,
204106
(
2006
).
48.
T.
Yoshikawa
,
M.
Kobayashi
, and
H.
Nakai
,
Theor. Chem. Acc.
130
,
411
(
2011
).
49.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
129
,
044103
(
2008
).
50.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
131
,
114108
(
2009
).
51.
H.
Nishizawa
,
Y.
Nishimura
,
M.
Kobayashi
,
S.
Irle
, and
H.
Nakai
,
J. Comput. Chem.
37
,
1983
(
2016
).
52.
H.
Nakai
,
A. W.
Sakti
, and
Y.
Nishimura
,
J. Phys. Chem. B
120
,
217
(
2016
).
53.
A. W.
Sakti
,
Y.
Nishimura
, and
H.
Nakai
,
J. Phys. Chem. B
121
,
1362
(
2017
).
54.
M.
Okoshi
,
C.-P.
Chou
, and
H.
Nakai
,
J. Phys. Chem. B
122
,
2600
(
2018
).
55.
Q.
Zheng
,
S.
Miura
,
K.
Miyazaki
,
S.
Ko
,
E.
Watanabe
,
M.
Okoshi
,
C.-P.
Chou
,
Y.
Nishimura
,
H.
Nakai
,
T.
Kamiya
,
T.
Honda
,
J.
Akikusa
,
Y.
Yamada
, and
A.
Yamada
,
Angew. Chem., Int. Ed.
58
,
14202
(
2019
).
56.
A. W.
Sakti
,
Y.
Nishimura
,
H.
Sato
, and
H.
Nakai
,
Bull. Chem. Soc. Jpn.
90
,
1230
(
2017
).
57.
H.
Uratani
,
C.-P.
Chou
, and
H.
Nakai
,
Phys. Chem. Chem. Phys.
22
,
97
(
2020
).
58.
J.
Ono
,
M.
Imai
,
Y.
Nishimura
, and
H.
Nakai
, “
Hydroxide ion carrier for proton pump in bacteriorhodopsin: Primary proton transfer
,” bioRxiv (
2019
).
59.
T.
Yoshikawa
,
N.
Komoto
,
Y.
Nishimura
, and
H.
Nakai
,
J. Comput. Chem.
40
,
2778
(
2019
).
60.
N.
Komoto
,
T.
Yoshikawa
,
Y.
Nishimura
, and
H.
Nakai
,
J. Chem. Theory Comput.
16
,
2369
(
2020
).
61.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
,
931
(
2011
).
62.
J. C.
Slater
and
G. F.
Koster
,
Phys. Rev.
94
,
1498
(
1954
).
63.
M. E.
Casida
,
J. Mol. Struct.: THEOCHEM
914
,
3
(
2009
).
64.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
65.
I. G.
Ryabinkin
,
J.
Nagesh
, and
A. F.
Izmaylov
,
J. Phys. Chem. Lett.
6
,
4200
(
2015
).
66.
F.
Plasser
,
G.
Granucci
,
J.
Pittner
,
M.
Barbatti
,
M.
Persico
, and
H.
Lischka
,
J. Chem. Phys.
137
,
22A514
(
2012
).
67.
G.
Granucci
and
M.
Persico
,
J. Chem. Phys.
126
,
134114
(
2007
).
68.
A. V.
Akimov
,
J. Phys. Chem. Lett.
9
,
6096
(
2018
).
69.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
70.
F.
Plasser
,
M.
Ruckenbauer
,
S.
Mai
,
M.
Oppel
,
P.
Marquetand
, and
L.
González
,
J. Chem. Theory Comput.
12
,
1207
(
2016
).
71.
L.
Wang
,
J.
Qiu
,
X.
Bai
, and
J.
Xu
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1435
(
2020
).
72.
H.
Nakai
and
T.
Yoshikawa
,
J. Chem. Phys.
146
,
124123
(
2017
).
73.
Y.
Ikabata
,
Q.
Wang
,
T.
Yoshikawa
,
A.
Ueda
,
T.
Murata
,
K.
Kariyazono
,
M.
Moriguchi
,
H.
Okamoto
,
Y.
Morita
, and
H.
Nakai
,
npj Quantum Mater.
2
,
27
(
2017
).
74.
M.
Sapunar
,
T.
Piteša
,
D.
Davidović
, and
N.
Došlić
,
J. Chem. Theory Comput.
15
,
3461
(
2019
).
75.
R. L.
Martin
,
J. Chem. Phys.
118
,
4775
(
2003
).
76.
Y.
Nishimura
and
H.
Nakai
,
J. Comput. Chem.
40
,
1538
(
2019
).
77.
P. P.
Ewald
,
Ann. Phys.
369
,
253
(
1921
).
78.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
).
79.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
80.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
,
J. Chem. Theory Comput.
9
,
338
(
2013
).
81.
S. M.
Parker
,
S.
Roy
, and
F.
Furche
,
Phys. Chem. Chem. Phys.
21
,
18999
(
2019
).
You do not currently have access to this content.