Quantum dot (QD) sensitized triplet exciton generation has demonstrated promising applications in various fields such as photon up-conversion through triplet–triplet annihilation. However, how direct triplet energy transfer from the QD to the acceptor through Dexter energy transfer (DET) competes with other processes, including Förster resonance energy transfer (FRET) and charge transfer, remains poorly understood. Herein, the competition of these pathways for QD-sensitized triplet excited state generation in CdSe QD-modified boron dipyrromethene (BODIPY) complexes is studied using transient absorption spectroscopy. After excitation of the CdSe QD with 500 nm pulses, the BODIPY triplet excited state is generated through charge recombination in a charge separated intermediate state (QD−·–BODIPY). This intermediate state is populated either through FRET from the excited QD to BODIPY followed by electron transfer from the singlet excited state of BODIPY to the QD or through hole transfer from the excited QD to BODIPY. The triplet excited state generation efficiencies from the FRET and hole transfer pathways are estimated to be (6.18 ± 1.39)% and (13.5 ± 3.1)%, respectively. Compared to these indirect pathways, direct DET from the QD to the BODIPY triplet state is kinetically not competitive. These results demonstrate that sequential charge transfer can be an efficient pathway for triplet excited state generation in QD–acceptor complexes.

1.
T. N.
Singh-Rachford
and
F. N.
Castellano
,
Coord. Chem. Rev.
254
(
21-22
),
2560
2573
(
2010
).
2.
N.
Yanai
and
N.
Kimizuka
,
Acc. Chem. Res.
50
(
10
),
2487
2495
(
2017
).
3.
T.
Serevičius
,
R.
Komskis
,
P.
Adomėnas
,
O.
Adomėnienė
,
G.
Kreiza
,
V.
Jankauskas
,
K.
Kazlauskas
,
A.
Miasojedovas
,
V.
Jankus
,
A.
Monkman
, and
S.
Juršėnas
,
J. Phys. Chem. C
121
(
15
),
8515
8524
(
2017
).
4.
X. S.
Li
,
S.
Kolemen
,
J.
Yoon
, and
E. U.
Akkaya
,
Adv. Funct. Mater.
27
(
5
),
1604053
(
2017
).
5.
P.
Majumdar
,
R.
Nomula
, and
J.
Zhao
,
J. Mater. Chem. C
2
(
30
),
5982
5997
(
2014
).
6.
C.
Wohnhaas
,
V.
Mailänder
,
M.
Dröge
,
M. A.
Filatov
,
D.
Busko
,
Y.
Avlasevich
,
S.
Baluschev
,
T.
Miteva
,
K.
Landfester
, and
A.
Turshatov
,
Macromol. Biosci.
13
(
10
),
1422
1430
(
2013
).
7.
Y.
You
,
Curr. Opin. Chem. Biol.
17
(
4
),
699
707
(
2013
).
8.
B.
Minaev
,
G.
Baryshnikov
, and
H.
Agren
,
Phys. Chem. Chem. Phys.
16
(
5
),
1719
1758
(
2014
).
9.
X.-K.
Liu
,
W.
Chen
,
H. T.
Chandran
,
J.
Qing
,
Z.
Chen
,
X.-H.
Zhang
, and
C.-S.
Lee
,
ACS Appl. Mater. Interfaces
8
(
39
),
26135
26142
(
2016
).
10.
J.
Zhao
,
K.
Xu
,
W.
Yang
,
Z.
Wang
, and
F.
Zhong
,
Chem. Soc. Rev.
44
(
24
),
8904
8939
(
2015
).
11.
V.
Jankus
,
P.
Data
,
D.
Graves
,
C.
McGuinness
,
J.
Santos
,
M. R.
Bryce
,
F. B.
Dias
, and
A. P.
Monkman
,
Adv. Funct. Mater.
24
(
39
),
6178
6186
(
2014
).
12.
J.
Zhao
,
K.
Chen
,
Y.
Hou
,
Y.
Che
,
L.
Liu
, and
D.
Jia
,
Org. Biomol. Chem.
16
(
20
),
3692
3701
(
2018
).
13.
W.
Zhao
and
F. N.
Castellano
,
J. Phys. Chem. A
110
(
40
),
11440
11445
(
2006
).
14.
J.
Zhao
,
W.
Wu
,
J.
Sun
, and
S.
Guo
,
Chem. Soc. Rev.
42
(
12
),
5323
5351
(
2013
).
15.
D. V.
Kozlov
and
F. N.
Castellano
,
Chem. Commun.
29
(
24
),
2860
2861
(
2004
).
16.
J.
Zhao
,
S.
Ji
, and
H.
Guo
,
RSC Adv.
1
(
6
),
937
950
(
2011
).
17.
D. L.
Dexter
, “
A theory of sensitized luminescence in solid
,”
J. Chem. Phys.
21
,
836
(
1953
).
18.
D. S.
Tyson
,
C. A.
Bignozzi
, and
F. N.
Castellano
,
J. Am. Chem. Soc.
124
(
17
),
4562
4563
(
2002
).
19.
D.
Gust
,
T. A.
Moore
,
A. L.
Moore
,
S.-J.
Lee
,
E.
Bittersmann
,
D. K.
Luttrull
,
A. A.
Rehms
,
J. M.
DeGraziano
,
X. C.
Ma
,
F.
Gao
,
R. E.
Belford
, and
T. T.
Trier
,
Science
248
(
4952
),
199
(
1990
).
20.
D.
Carbonera
,
M.
Di Valentin
,
C.
Corvaja
,
G.
Agostini
,
G.
Giacometti
,
P. A.
Liddell
,
D.
Kuciauskas
,
A. L.
Moore
,
T. A.
Moore
, and
D.
Gust
,
J. Am. Chem. Soc.
120
(
18
),
4398
4405
(
1998
).
21.
Z. E. X.
Dance
,
Q.
Mi
,
D. W.
McCamant
,
M. J.
Ahrens
,
M. A.
Ratner
, and
M. R.
Wasielewski
,
J. Phys. Chem. B
110
(
50
),
25163
25173
(
2006
).
22.
K.
Chen
,
W.
Yang
,
Z.
Wang
,
A.
Iagatti
,
L.
Bussotti
,
P.
Foggi
,
W.
Ji
,
J.
Zhao
, and
M.
Di Donato
,
J. Phys. Chem. A
121
(
40
),
7550
7564
(
2017
).
23.
S. S.
Skourtis
,
C.
Liu
,
P.
Antoniou
,
A. M.
Virshup
, and
D. N.
Beratan
,
Proc. Natl. Acad. Sci. U. S. A.
113
(
29
),
8115
8120
(
2016
).
24.
Z.-Q.
You
and
C.-P.
Hsu
,
Int. J. Quantum Chem.
114
(
2
),
102
115
(
2014
).
25.
Z.-Q.
You
,
C.-P.
Hsu
, and
G. R.
Fleming
,
J. Chem. Phys.
124
(
4
),
044506
(
2006
).
26.
S. H.
Lin
,
Proc. R. Soc. London, Ser. A
335
(
1600
),
51
(
1973
).
27.
G. L.
Closs
,
M. D.
Johnson
,
J. R.
Miller
, and
P.
Piotrowiak
,
J. Am. Chem. Soc.
111
(
10
),
3751
3753
(
1989
).
28.
J. E.
Subotnik
,
J.
Vura-Weis
,
A. J.
Sodt
, and
M. A.
Ratner
,
J. Phys. Chem. A
114
(
33
),
8665
8675
(
2010
).
29.
C.
Curutchet
and
A. A.
Voityuk
,
J. Phys. Chem. C
116
(
42
),
22179
22185
(
2012
).
30.
A.
Köhler
and
H.
Bässler
,
J. Mater. Chem.
21
(
12
),
4003
4011
(
2011
).
31.
C.
Mongin
,
S.
Garakyaraghi
,
N.
Razgoniaeva
,
M.
Zamkov
, and
F. N.
Castellano
,
Science
351
(
6271
),
369
372
(
2016
).
32.
G. B.
Piland
,
Z. Y.
Huang
,
M. L.
Tang
, and
C. J.
Bardeen
,
J. Phys. Chem. C
120
(
11
),
5883
5889
(
2016
).
33.
X.
Li
,
Z.
Huang
,
R.
Zavala
, and
M. L.
Tang
,
J. Phys. Chem. Lett.
7
(
11
),
1955
1959
(
2016
).
34.
X.
Luo
,
R.
Lai
,
Y.
Li
,
Y.
Han
,
G.
Liang
,
X.
Liu
,
T.
Ding
,
J.
Wang
, and
K.
Wu
,
J. Am. Chem. Soc.
141
(
10
),
4186
4190
(
2019
).
35.
D. J.
Norris
and
M. G.
Bawendi
,
J. Chem. Phys.
103
(
13
),
5260
5268
(
1995
).
36.
G. D.
Scholes
and
G.
Rumbles
,
Nat. Mater.
5
(
9
),
683
696
(
2006
).
37.
A. I.
Ekimov
,
F.
Hache
,
M. C.
Schanne-Klein
,
D.
Ricard
,
C.
Flytzanis
,
I. A.
Kudryavtsev
,
T. V.
Yazeva
,
A. V.
Rodina
, and
A. L.
Efros
,
J. Opt. Soc. Am. B
10
(
1
),
100
107
(
1993
).
38.
W. W.
Yu
,
L. H.
Qu
,
W. Z.
Guo
, and
X. G.
Peng
,
Chem. Mater.
15
(
14
),
2854
2860
(
2003
).
39.
L.
Cademartiri
,
E.
Montanari
,
G.
Calestani
,
A.
Migliori
,
A.
Guagliardi
, and
G. A.
Ozin
,
J. Am. Chem. Soc.
128
(
31
),
10337
10346
(
2006
).
40.
H. M.
Zhu
and
T. Q.
Lian
,
Energy Environ. Sci.
5
(
11
),
9406
9418
(
2012
).
41.
H.
Zhu
,
N.
Song
, and
T.
Lian
,
J. Am. Chem. Soc.
132
(
42
),
15038
15045
(
2010
).
42.
M. A.
Boles
,
D.
Ling
,
T.
Hyeon
, and
D. V.
Talapin
,
Nat. Mater.
15
(
2
),
141
153
(
2016
).
43.
S.
Kim
,
B.
Fisher
,
H.-J.
Eisler
, and
M.
Bawendi
,
J. Am. Chem. Soc.
125
(
38
),
11466
11467
(
2003
).
44.
M.
Wu
,
D. N.
Congreve
,
M. W. B.
Wilson
,
J.
Jean
,
N.
Geva
,
M.
Welborn
,
T.
Van Voorhis
,
V.
Bulović
,
M. G.
Bawendi
, and
M. A.
Baldo
,
Nat. Photonics
10
,
31
(
2015
).
45.
Z. Y.
Huang
,
X.
Li
,
B. D.
Yip
,
J. M.
Rubalcava
,
C. J.
Bardeen
, and
M. L.
Tang
,
Chem. Mater.
27
(
21
),
7503
7507
(
2015
).
46.
Z.
Huang
and
M. L.
Tang
,
J. Am. Chem. Soc.
139
(
28
),
9412
9418
(
2017
).
47.
Z.
Huang
,
Z.
Xu
,
M.
Mahboub
,
X.
Li
,
J. W.
Taylor
,
W. H.
Harman
,
T.
Lian
, and
M. L.
Tang
,
Angew. Chem., Int. Ed.
56
(
52
),
16583
16587
(
2017
).
48.
M.
Mahboub
,
H.
Maghsoudiganjeh
,
A. M.
Pham
,
Z. Y.
Huang
, and
M. L.
Tang
,
Adv. Funct. Mater.
26
(
33
),
6091
6097
(
2016
).
49.
Z. Y.
Huang
,
P.
Xia
,
N.
Megerdich
,
D. A.
Fishman
,
V. I.
Vullev
, and
M. L.
Tang
,
ACS Photonics
5
(
8
),
3089
3096
(
2018
).
50.
Z.
Huang
,
X.
Li
,
M.
Mahboub
,
K. M.
Hanson
,
V. M.
Nichols
,
H.
Le
,
M. L.
Tang
, and
C. J.
Bardeen
,
Nano Lett.
15
(
8
),
5552
5557
(
2015
).
51.
J. A.
Bender
,
E. K.
Raulerson
,
X.
Li
,
T.
Goldzak
,
P.
Xia
,
T.
Van Voorhis
,
M. L.
Tang
, and
S. T.
Roberts
,
J. Am. Chem. Soc.
140
(
24
),
7543
7553
(
2018
).
52.
S.
Garakyaraghi
,
C.
Mongin
,
D. B.
Granger
,
J. E.
Anthony
, and
F. N.
Castellano
,
J. Phys. Chem. Lett.
8
(
7
),
1458
1463
(
2017
).
53.
R. D.
Harcourt
,
G. D.
Scholes
, and
K. P.
Ghiggino
,
J. Chem. Phys.
101
(
12
),
10521
10525
(
1994
).
54.
X.
Luo
,
Y.
Han
,
Z.
Chen
,
Y.
Li
,
G.
Liang
,
X.
Liu
,
T.
Ding
,
C.
Nie
,
M.
Wang
,
F. N.
Castellano
, and
K.
Wu
,
Nat. Commun.
11
(
1
),
28
(
2020
).
55.
C.
de Mello Donegá
,
M.
Bode
, and
A.
Meijerink
,
Phys. Rev. B
74
(
8
),
085320
(
2006
).
56.
D. J.
Weinberg
,
S. M.
Dyar
,
Z.
Khademi
,
M.
Malicki
,
S. R.
Marder
,
M. R.
Wasielewski
, and
E. A.
Weiss
,
J. Am. Chem. Soc.
136
(
41
),
14513
14518
(
2014
).
57.
J.
Wang
,
T.
Ding
,
C.
Nie
,
M.
Wang
,
P.
Zhou
, and
K.
Wu
,
J. Am. Chem. Soc.
142
(
10
),
4723
4731
(
2020
).
58.
J. B.
Hoffman
,
H.
Choi
, and
P. V.
Kamat
,
J. Phys. Chem. C
118
(
32
),
18453
18461
(
2014
).
59.
T.
Jin
,
N.
Uhlikova
,
Z.
Xu
,
Y.
Zhu
,
Y.
Huang
,
E.
Egap
, and
T.
Lian
,
J. Chem. Phys.
151
(
24
),
241101
(
2019
).
60.
J. E.
Huang
,
Z. Q.
Huang
,
S. Y.
Jin
, and
T. Q.
Lian
,
J. Phys. Chem. C
112
(
49
),
19734
19738
(
2008
).
61.
J.
Huang
,
Z.
Huang
,
Y.
Yang
,
H.
Zhu
, and
T.
Lian
,
J. Am. Chem. Soc.
132
(
13
),
4858
4864
(
2010
).
62.
B.
Valeur
and
N.
Berberan-Santos
,
Molecular Fluorescence: Principles and Applications
, 2nd ed. (
Wiley-VCH
,
Weinheim
,
2012
), pp.
213
261
.
63.
Z.
Xu
,
T.
Jin
,
Y.
Huang
,
K.
Mulla
,
F. A.
Evangelista
,
E.
Egap
, and
T.
Lian
,
Chem. Sci.
10
(
24
),
6120
6124
(
2019
).
64.
R. A.
Marcus
,
Rev. Mod. Phys.
65
(
3
),
599
610
(
1993
).
65.
K.
Wu
,
Y.
Du
,
H.
Tang
,
Z.
Chen
, and
T.
Lian
,
J. Am. Chem. Soc.
137
(
32
),
10224
10230
(
2015
).
66.
Y.
Han
,
S.
He
,
X.
Luo
,
Y.
Li
,
Z.
Chen
,
W.
Kang
,
X.
Wang
, and
K.
Wu
,
J. Am. Chem. Soc.
141
(
33
),
13033
13037
(
2019
).

Supplementary Material

You do not currently have access to this content.