Determining local structures of molecular systems helps the scientific and technological understanding of the function of materials. Molecular simulations provide microscopic information on molecular systems, but analyzing the resulting local structures is a non-trivial task. Many kinds of order parameters have been developed for detecting such local structures. Bond-orientational order parameters are promising for classifying local structures and have been used to analyze systems with such structures as body-centered cubic, face-centered cubic, hexagonal close-packed, and liquid. A specific set of order parameters derived from Lechner’s definitional equation are widely used to classify complex local structures. However, there has been no thorough investigation of the classification capability of other Lechner parameters, despite their potential to precisely distinguish local structures. In this work, we evaluate the classification capability of 112 species of bond-orientational order parameters including Lechner’s definitions. A total of 234 248 combinations of these parameters are also evaluated. The evaluation is systematically and automatically performed using machine learning techniques. To distinguish the four types of local structures, we determine the better set of two order parameters by comparing with a conventional set. A set of three order parameters is also suggested for better accuracy. Therefore, the machine learning scheme in the present study enables the systematic, accurate, and automatic mining of effective order parameters for classifying crystal structures.

1.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
2.
W. L.
McMillan
, “
Simple molecular model for the smectic a phase of liquid crystals
,”
Phys. Rev. A
4
,
1238
1246
(
1971
).
3.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
805
(
1983
).
4.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
); arXiv:0806.3345v1.
5.
G. J.
Ackland
and
A. P.
Jones
, “
Applications of local crystal structure measures in experiment and simulation
,”
Phys. Rev. B
73
,
054104
(
2006
).
6.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
,
11085
11088
(
1998
).
7.
A.
Stukowski
, “
Structure identification methods for atomistic simulations of crystalline materials
,”
Modell. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
); arXiv:1202.5005.
8.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
); arXiv:1209.3140.
9.
A.
Seko
,
A.
Togo
, and
I.
Tanaka
, “
Descriptors for machine learning of materials data
,” in
Nanoinformatics
(
Springer Singapore
,
Singapore
,
2018
), pp.
3
23
; arXiv:1709.01666.
10.
A.
Radhi
and
K.
Behdinan
, “
Identification of crystal structures in atomistic simulation by predominant common neighborhood analysis
,”
Comput. Mater. Sci.
126
,
182
190
(
2017
).
11.
H.
Doi
,
K. Z.
Takahashi
,
K.
Tagashira
,
J.-i.
Fukuda
, and
T.
Aoyagi
, “
Machine learning-aided analysis for complex local structure of liquid crystal polymers
,”
Sci. Rep.
9
,
16370
(
2019
).
12.
W.
Mickel
,
S. C.
Kapfer
,
G. E.
Schröder-Turk
, and
K.
Mecke
, “
Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter
,”
J. Chem. Phys.
138
,
044501
(
2013
); arXiv:1209.6180.
13.
A.
Okabe
,
B.
Boots
,
K.
Sugihara
, and
S. N.
Chiu
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
(
John Wiley & Sons
,
2009
), Vol. 501.
14.
D.
Quigley
and
P. M.
Rodger
, “
Metadynamics simulations of ice nucleation and growth
,”
J. Chem. Phys.
128
,
154518
(
2008
).
15.
Y. J.
and
P.
Entel
, “
Impact of medium-range order on the glass transition in liquid Ni-Si alloys
,”
Phys. Rev. B
84
,
104203
(
2011
).
16.
J.
Bialké
,
T.
Speck
, and
H.
Löwen
, “
Crystallization in a dense suspension of self-propelled particles
,”
Phys. Rev. Lett.
108
,
168301
(
2012
).
17.
J.
Kalikka
,
J.
Akola
,
J.
Larrucea
, and
R.
Jones
, “
Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study
,”
Phys. Rev. B
86
,
144113
(
2012
).
18.
M.
Leocmach
and
H.
Tanaka
, “
Roles of icosahedral and crystal-like order in the hard spheres glass transition
,”
Nat. Commun.
3
,
974
(
2012
); arXiv:1301.7228v1.
19.
A.
Reinhardt
,
J. P. K.
Doye
,
E. G.
Noya
, and
C.
Vega
, “
Local order parameters for use in driving homogeneous ice nucleation with all-atom models of water
,”
J. Chem. Phys.
137
,
194504
(
2012
); arXiv:1208.6033.
20.
J.
Russo
and
H.
Tanaka
, “
The microscopic pathway to crystallization in supercooled liquids
,”
Sci. Rep.
2
,
505
(
2012
).
21.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
, “
Homogeneous ice nucleation at moderate supercooling from molecular simulation
,”
J. Am. Chem. Soc.
135
,
15008
15017
(
2013
).
22.
U.
Gasser
,
F.
Ziese
, and
G.
Maret
, “
Characterization of local structures with bond-order parameters and graphs of the nearest neighbors, a comparison
,”
Eur. Phys. J.: Spec. Top.
223
,
455
467
(
2014
).
23.
T.
Kawasaki
and
H.
Tanaka
, “
Structural evolution in the aging process of supercooled colloidal liquids
,”
Phys. Rev. E
89
,
062315
(
2014
).
24.
T.-Q.
Yu
,
P.-Y.
Chen
,
M.
Chen
,
A.
Samanta
,
E.
Vanden-Eijnden
, and
M.
Tuckerman
, “
Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions
,”
J. Chem. Phys.
140
,
214109
(
2014
).
25.
D.
Coslovich
and
R. L.
Jack
, “
Structure of inactive states of a binary Lennard-Jones mixture
,”
J. Stat. Mech.: Theory Exp.
2016
,
074012
.
26.
H.
Doi
and
K.
Yasuoka
, “
Replica exchange molecular simulation of Lennard-Jones particles in a two-dimensional confined system
,”
AIP Adv.
7
,
055018
(
2017
).
27.
H.
Eslami
,
N.
Khanjari
, and
F.
Müller-Plathe
, “
A local order parameter-based method for simulation of free energy barriers in crystal nucleation
,”
J. Chem. Theory Comput.
13
,
1307
1316
(
2017
).
28.
A.
Hudait
,
D. R.
Moberg
,
Y.
Qiu
,
N.
Odendahl
,
F.
Paesani
, and
V.
Molinero
, “
Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
8266
8271
(
2018
).
29.
X.
Li
,
L.
Zuo
,
X.
Zhang
, and
T.
Zhang
, “
Atomic structure and magnetic properties of the Fe78B13Si9 amorphous alloy surface
,”
J. Phys. Chem. C
122
,
28613
28618
(
2018
).
30.
P.
Montero de Hijes
,
J. R.
Espinosa
,
C.
Vega
, and
E.
Sanz
, “
Ice growth rate: Temperature dependence and effect of heat dissipation
,”
J. Chem. Phys.
151
,
044509
(
2019
).
31.
M.
Spellings
and
S. C.
Glotzer
, “
Machine learning for crystal identification and discovery
,”
AIChE J.
64
,
2198
2206
(
2018
); arXiv:1710.09861.
32.
J.
Carrasquilla
and
R. G.
Melko
, “
Machine learning phases of matter
,”
Nat. Phys.
13
,
431
434
(
2017
).
33.
E. P. L.
Van Nieuwenburg
,
Y.-H.
Liu
, and
S. D.
Huber
, “
Learning phase transitions by confusion
,”
Nat. Phys.
13
,
435
439
(
2017
).
34.
J. F.
Rodriguez-Nieva
and
M. S.
Scheurer
, “
Identifying topological order through unsupervised machine learning
,”
Nat. Phys.
15
,
790
(
2019
).
35.
M.
Walters
,
Q.
Wei
, and
J. Z. Y.
Chen
, “
Machine learning topological defects of confined liquid crystals in two dimensions
,”
Phys. Rev. E
99
,
062701
(
2019
).
36.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
37.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
38.
E. P.
Wigner
, “
On the matrices which reduce the Kronecker products of representations of S. R. groups
,” in
The Collected Works of Eugene Paul Wigner
(
Springer
,
1993
), pp.
608
654
.
39.
L.
Breiman
, “
Random forests
,”
Mach. Learn.
45
,
5
32
(
2001
).
40.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
 et al, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
2830
(
2011
).
41.
S.
Raschka
, “
Mlxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing stack
,”
J. Open Source Software
3
(
24
),
638
(
2018
).
You do not currently have access to this content.