Various quantum-classical approaches to the simulation of processes taking place in real molecular systems have been shown to provide quantitatively correct results in a number of scenarios. However, it is not immediately clear how strongly the approximations related to the classical treatment of the system’s environment compromise the accuracy of these methods. In this work, we present the analysis of the accuracy of the forward–backward trajectory solution (FBTS) of the quantum-classical Liouville equation. To this end, we simulate the excitation dynamics in a molecular dimer using the FBTS and the exact hierarchical equations of motion approach. To facilitate the understanding of the possible benefits of the FBTS, the simulations are also performed using a closely related quantum-classical Poisson Bracket Mapping Equation (PBME) method, as well as the well-known Förster and Redfield theories. We conclude that the FBTS is considerably more accurate than the PBME and the perturbative approaches for most realistic parameter sets and is, therefore, more versatile. We investigate the impact each parameter has on the accuracy of the FBTS. Our results can be used to predict whether the FBTS may be expected to yield satisfactory results when calculating system dynamics for the given system parameters.

1.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley VCH Verlag GmbH
,
2011
).
2.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
2008
).
3.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2002
).
4.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mancal
,
Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy
(
Wiley-VCH
,
2013
).
5.
I.
de Vega
and
D.
Alonso
,
Rev. Mod. Phys.
89
,
015001
(
2017
).
6.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
2006
).
7.
S. J.
Jang
and
B.
Mennucci
,
Rev. Mod. Phys.
90
,
035003
(
2018
).
9.
A. G.
Redfield
,
IBM J. Res. Dev.
1
,
19
(
1957
).
10.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
11.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
12.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
13.
J. T.
Stockburger
and
C. H.
Mak
,
J. Chem. Phys.
110
,
4983
(
1999
).
14.
H.
Imai
,
Y.
Ohtsuki
, and
H.
Kono
,
Chem. Phys.
446
,
134
(
2015
).
15.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
16.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Chem. Phys.
135
,
154112
(
2011
).
17.
J.
Iles-Smith
,
N.
Lambert
, and
A.
Nazir
,
Phys. Rev. A
90
,
032114
(
2014
).
18.
E.
Rybakovas
,
A.
Gelzinis
, and
L.
Valkunas
,
Chem. Phys.
515
,
242
(
2018
).
19.
T.
Mančal
,
V.
Balevičius
, Jr.
, and
L.
Valkunas
,
J. Phys. Chem. A
115
,
3845
(
2011
).
20.
F.
Habecker
,
R.
Röhse
, and
T.
Klüner
,
J. Chem. Phys.
151
,
134113
(
2019
).
21.
J.
Seibt
and
T.
Mančal
,
J. Chem. Phys.
146
,
174109
(
2017
).
22.
Y.-H.
Hwang-Fu
,
W.
Chen
, and
Y.-C.
Cheng
,
Chem. Phys.
447
,
46
(
2015
).
23.
L. A.
Pachón
and
P.
Brumer
,
Phys. Chem. Chem. Phys.
14
,
10094
(
2012
).
24.
R.
Kapral
,
J. Phys.: Condens. Matter
27
,
073201
(
2015
).
25.
A.
Kelly
,
N.
Brackbill
, and
T. E.
Markland
,
J. Chem. Phys.
142
,
094110
(
2015
).
26.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
27.
J. E.
Subotnik
,
W.
Ouyang
, and
B. R.
Landry
,
J. Chem. Phys.
139
,
214107
(
2013
).
28.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
,
J. Chem. Phys.
129
,
084102
(
2008
).
29.
C.-Y.
Hsieh
and
R.
Kapral
,
J. Chem. Phys.
137
,
22A507
(
2012
).
30.
J.
Liu
and
G.
Hanna
,
J. Phys. Chem. Lett.
9
,
3928
(
2018
).
31.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
32.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
33.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
135
,
201101
(
2011
).
34.
P.
Huo
and
D. F.
Coker
,
Mol. Phys.
110
,
1035
(
2012
).
35.
N.
Rekik
,
C.-Y.
Hsieh
,
H.
Freedman
, and
G.
Hanna
,
J. Chem. Phys.
138
,
144106
(
2013
).
36.
F.
Martinez
,
N.
Rekik
, and
G.
Hanna
,
Chem. Phys. Lett.
573
,
77
(
2013
).
37.
F.
Martinez
and
G.
Hanna
,
J. Phys. Chem. A
120
,
3196
(
2016
).
38.
A.
Kelly
,
Faraday Discuss.
221
,
547
(
2020
).
39.
N. M.
Hoffmann
,
C.
Schäfer
,
N.
Säkkinen
,
A.
Rubio
,
H.
Appel
, and
A.
Kelly
,
J. Chem. Phys.
151
,
244113
(
2019
).
40.
A.
Nassimi
,
S.
Bonella
, and
R.
Kapral
,
J. Chem. Phys.
133
,
134115
(
2010
).
41.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1999
).
42.
G.
Stock
and
M.
Thoss
, in
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2005
), pp.
243
375
.
43.
C.-Y.
Hsieh
and
R.
Kapral
,
J. Chem. Phys.
138
,
134110
(
2013
).
44.
N.
Makri
,
J. Phys. Chem. B
103
,
2823
(
1999
).
45.
J.-J.
Ding
,
J.
Xu
,
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
135
,
164107
(
2011
).
46.
V.
Balevičius
, Jr.
,
A.
Gelzinis
,
D.
Abramavicius
,
T.
Mančal
, and
L.
Valkunas
,
Chem. Phys.
404
,
94
(
2012
).
47.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
275
,
355
(
2002
).
48.
A.
Gelzinis
,
E.
Rybakovas
, and
L.
Valkunas
,
J. Chem. Phys.
147
,
234108
(
2017
).
49.
H. W.
Kim
and
Y. M.
Rhee
,
J. Chem. Phys.
140
,
184106
(
2014
).
50.
H. W.
Kim
,
W.-G.
Lee
, and
Y. M.
Rhee
,
J. Chem. Phys.
141
,
124107
(
2014
).
51.
S.
Habershon
and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
244518
(
2009
).
52.
N.
Bellonzi
,
A.
Jain
, and
J. E.
Subotnik
,
J. Chem. Phys.
144
,
154110
(
2016
).
53.
J.
Cerrillo
and
J.
Cao
,
Phys. Rev. Lett.
112
,
110401
(
2014
).
54.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
,
J. Phys. Chem. Lett.
7
,
4809
(
2016
).
55.
V.
Balevičius
, Jr.
,
L.
Valkunas
, and
D.
Abramavicius
,
J. Chem. Phys.
143
,
074101
(
2015
).
56.
T.-C.
Dinh
and
T.
Renger
,
J. Chem. Phys.
142
,
034104
(
2015
).
57.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
J. Chem. Phys.
142
,
154107
(
2015
).
58.
T.
Mančal
and
F.
Šanda
,
Chem. Phys. Lett.
530
,
140
(
2012
).
59.
J.
Olšina
and
T.
Mančal
,
Chem. Phys.
404
,
103
(
2012
).
60.
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
,
Annu. Rev. Phys. Chem.
67
,
639
(
2016
).
61.
W. H.
Miller
and
S. J.
Cotton
,
Faraday Discuss.
195
,
9
(
2016
).
62.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).

Supplementary Material

You do not currently have access to this content.