We report a local, weight-dependent correlation density-functional approximation that incorporates information about both ground and excited states in the context of density functional theory for ensembles (eDFT). This density-functional approximation for ensembles is specially designed for the computation of single and double excitations within Gross–Oliveira–Kohn DFT (i.e., eDFT for neutral excitations) and can be seen as a natural extension of the ubiquitous local-density approximation in the context of ensembles. The resulting density-functional approximation, based on both finite and infinite uniform electron gas models, automatically incorporates the infamous derivative discontinuity contributions to the excitation energies through its explicit ensemble weight dependence. Its accuracy is illustrated by computing single and double excitations in one-dimensional (1D) many-electron systems in the weak, intermediate, and strong correlation regimes. Although the present weight-dependent functional has been specifically designed for 1D systems, the methodology proposed here is general, i.e., directly applicable to the construction of weight-dependent functionals for realistic three-dimensional systems, such as molecules and solids.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density-functional Theory of Atoms and Molecules
(
Clarendon Press
,
Oxford
,
1989
).
4.
H. L.
Woodcock
,
H. F.
Schaefer
, and
P. R.
Schreiner
,
J. Phys. Chem. A
106
,
11923
(
2002
).
5.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
6.
D. J.
Tozer
,
R. D.
Amos
,
N. C.
Handy
,
B. O.
Roos
, and
L.
Serrano-Andres
,
Mol. Phys.
97
,
859
(
1999
).
7.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
,
J. Chem. Phys.
119
,
2943
(
2003
).
8.
A. L.
Sobolewski
and
W.
Domcke
,
Chem. Phys.
294
,
73
(
2003
).
9.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
10.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
11.
D. J.
Tozer
and
N. C.
Handy
,
Phys. Chem. Chem. Phys.
2
,
2117
(
2000
).
12.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
13.
M. E.
Casida
and
D. R.
Salahub
,
J. Chem. Phys.
113
,
8918
(
2000
).
14.
E.
Tapavicza
,
I.
Tavernelli
,
U.
Rothlisberger
,
C.
Filippi
, and
M. E.
Casida
,
J. Chem. Phys.
129
,
124108
(
2008
).
15.
B. G.
Levine
,
C.
Ko
,
J.
Quenneville
, and
T. J.
MartÍnez
,
Mol. Phys.
104
,
1039
(
2006
).
16.
P.
Gori-Giorgi
and
M.
Seidl
,
Phys. Chem. Chem. Phys.
12
,
14405
(
2010
).
18.
L.
Gagliardi
,
D. G.
Truhlar
,
G.
Li Manni
,
R. K.
Carlson
,
C. E.
Hoyer
, and
J. L.
Bao
,
Acc. Chem. Res.
50
,
66
(
2017
).
19.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
20.
M. E.
Casida
,
Recent Advances in Density Functional Methods
(
World Scientific
,
Singapore
,
1995
), p.
155
.
21.
M. E.
Casida
and
M.
Huix-Rotllant
,
Annu. Rev. Phys. Chem.
63
,
287
(
2012
).
22.
G.
Vignale
,
Phys. Rev. A
77
,
062511
(
2008
).
23.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
(
2005
).
24.
N. T.
Maitra
,
F.
Zhang
,
R. J.
Cave
, and
K.
Burke
,
J. Chem. Phys.
120
,
5932
(
2004
).
25.
R. J.
Cave
,
F.
Zhang
,
N. T.
Maitra
, and
K.
Burke
,
Chem. Phys. Lett.
389
,
39
(
2004
).
26.
G.
Mazur
and
R.
Włodarczyk
,
J. Comput. Chem.
30
,
811
(
2009
).
27.
P.
Romaniello
,
D.
Sangalli
,
J. A.
Berger
,
F.
Sottile
,
L. G.
Molinari
,
L.
Reining
, and
G.
Onida
,
J. Chem. Phys.
130
,
044108
(
2009
).
28.
D.
Sangalli
,
P.
Romaniello
,
G.
Onida
, and
A.
Marini
,
J. Chem. Phys.
134
,
034115
(
2011
).
29.
G.
Mazur
,
M.
Makowski
,
R.
Włodarczyk
, and
Y.
Aoki
,
Int. J. Quantum Chem.
111
,
819
(
2011
).
30.
M.
Huix-Rotllant
,
A.
Ipatov
,
A.
Rubio
, and
M. E.
Casida
,
Chem. Phys.
391
,
120
(
2011
).
31.
P.
Elliott
,
S.
Goldson
,
C.
Canahui
, and
N. T.
Maitra
,
Chem. Phys.
391
,
110
(
2011
).
32.
N. T.
Maitra
, “
Memory: History, initial-state dependence, and double-excitations
,” in
Fundamentals of Time-dependent Density Functional Theory
, edited by
M. A.
Marques
,
N. T.
Maitra
,
F. M.
Nogueira
,
E.
Gross
, and
A.
Rubio
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2012
), Vol. 837, pp.
167
184
.
33.
E. J.
Sundstrom
and
M.
Head-Gordon
,
J. Chem. Phys.
140
,
114103
(
2014
).
34.
P.-F.
Loos
,
M.
Boggio-Pasqua
,
A.
Scemama
,
M.
Caffarel
, and
D.
Jacquemin
,
J. Chem. Theory Comput.
15
,
1939
(
2019
).
35.
K. A. B. O.
Roos
,
M. P.
Fulscher
,
P.-A.
Malmqvist
, and
L.
Serrano-Andres
,
Advances in Chemical Physics
(
Wiley
,
New York
,
1996
), pp.
219
331
.
36.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
37.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
350
,
297
(
2001
).
38.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
39.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
40.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons, Inc.
,
2013
).
41.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
,
Phys. Rev. A
37
,
2805
(
1988
).
42.
E. K. U.
Gross
,
L. N.
Oliveira
, and
W.
Kohn
,
Phys. Rev. A
37
,
2809
(
1988
).
43.
L. N.
Oliveira
,
E. K. U.
Gross
, and
W.
Kohn
,
Phys. Rev. A
37
,
2821
(
1988
).
44.
A. K.
Theophilou
,
J. Phys. C: Solid State Phys.
12
,
5419
(
1979
).
45.
E.
Pastorczak
,
N. I.
Gidopoulos
, and
K.
Pernal
,
Phys. Rev. A
87
,
062501
(
2013
).
46.
Z.-H.
Yang
,
J. R.
Trail
,
A.
Pribram-Jones
,
K.
Burke
,
R. J.
Needs
, and
C. A.
Ullrich
,
Phys. Rev. A
90
,
042501
(
2014
).
47.
K.
Deur
,
L.
Mazouin
, and
E.
Fromager
,
Phys. Rev. B
95
,
035120
(
2017
).
48.
K.
Deur
and
E.
Fromager
,
J. Chem. Phys.
150
,
094106
(
2019
).
49.
B.
Senjean
and
E.
Fromager
,
Phys. Rev. A
98
,
022513
(
2018
).
50.
B.
Senjean
and
E.
Fromager
,
Int. J. Quantum Chem.
e26190
(
2020
).
52.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
53.
O.
Franck
and
E.
Fromager
,
Mol. Phys.
112
,
1684
(
2014
).
54.
A.
Borgoo
,
A. M.
Teale
, and
T.
Helgaker
,
AIP Conf. Proc.
1702
,
090049
(
2015
).
55.
A.
Kazaryan
,
J.
Heuver
, and
M.
Filatov
,
J. Phys. Chem. A
112
,
12980
(
2008
).
56.
T.
Gould
and
J. F.
Dobson
,
J. Chem. Phys.
138
,
014103
(
2013
).
57.
T.
Gould
and
J.
Toulouse
,
Phys. Rev. A
90
,
050502
(
2014
).
58.
M.
Filatov
,
M.
Huix-Rotllant
, and
I.
Burghardt
,
J. Chem. Phys.
142
,
184104
(
2015
).
59.
M.
Filatov
, “
Ensemble DFT approach to excited states of strongly correlated molecular systems
,” in
Density-Functional Methods for Excited States
, edited by
N.
Ferré
,
M.
Filatov
, and
M.
Huix-Rotllant
(
Springer International Publishing
,
Cham
,
2015
), Vol. 368, pp.
97
124
.
60.
M.
Filatov
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
146
(
2015
).
61.
T.
Gould
and
S.
Pittalis
,
Phys. Rev. Lett.
119
,
243001
(
2017
).
62.
T.
Gould
,
L.
Kronik
, and
S.
Pittalis
,
J. Chem. Phys.
148
,
174101
(
2018
).
63.
T.
Gould
and
S.
Pittalis
,
Phys. Rev. Lett.
123
,
016401
(
2019
).
64.
F.
Sagredo
and
K.
Burke
,
J. Chem. Phys.
149
,
134103
(
2018
).
65.
P. W.
Ayers
,
M.
Levy
, and
A.
Nagy
,
Theor. Chem. Acc.
137
,
152
(
2018
).
66.
K.
Deur
,
L.
Mazouin
,
B.
Senjean
, and
E.
Fromager
,
Eur. Phys. J. B
91
,
162
(
2018
).
67.
E.
Kraisler
and
L.
Kronik
,
Phys. Rev. Lett.
110
,
126403
(
2013
).
68.
E.
Kraisler
and
L.
Kronik
,
J. Chem. Phys.
140
,
18A540
(
2014
).
69.
M. M.
Alam
,
S.
Knecht
, and
E.
Fromager
,
Phys. Rev. A
94
,
012511
(
2016
).
70.
M. M.
Alam
,
K.
Deur
,
S.
Knecht
, and
E.
Fromager
,
J. Chem. Phys.
147
,
204105
(
2017
).
72.
Á.
Nagy
,
J. Phys. B: At., Mol. Opt. Phys.
34
,
2363
(
2001
).
73.
Á.
Nagy
,
S.
Liu
, and
L.
Bartolloti
,
J. Chem. Phys.
122
,
134107
(
2005
).
74.
E.
Pastorczak
and
K.
Pernal
,
J. Chem. Phys.
140
,
18A514
(
2014
).
75.
A.
Pribram-Jones
,
Z.-h.
Yang
,
J. R.
Trail
,
K.
Burke
,
R. J.
Needs
, and
C. A.
Ullrich
,
J. Chem. Phys.
140
,
18A541
(
2014
).
76.
W.
Yang
,
P.
Mori-Sánchez
, and
A. J.
Cohen
,
J. Chem. Phys.
139
,
104114
(
2013
).
77.
Z.-H.
Yang
,
A.
Pribram-Jones
,
K.
Burke
, and
C. A.
Ullrich
,
Phys. Rev. Lett.
119
,
033003
(
2017
).
78.
B.
Senjean
,
S.
Knecht
,
H. J. A.
Jensen
, and
E.
Fromager
,
Phys. Rev. A
92
,
012518
(
2015
).
79.
B.
Senjean
,
E. D.
Hedegård
,
M. M.
Alam
,
S.
Knecht
, and
E.
Fromager
,
Mol. Phys.
114
,
968
(
2016
).
80.
J. C.
Smith
,
A.
Pribram-Jones
, and
K.
Burke
,
Phys. Rev. B
93
,
245131
(
2016
).
81.
D. J.
Carrascal
,
J.
Ferrer
,
J. C.
Smith
, and
K.
Burke
,
J. Phys. Condens. Matter
27
,
393001
(
2015
).
82.
E.
Fromager
, arXiv:2001.08605 [physics.chem-ph] (
2020
).
83.
T.
Gould
and
S.
Pittalis
, arXiv:2001.09429 [cond-mat.str-el] (
2020
).
84.
P.-F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
108
,
083002
(
2012
).
85.
P.-F.
Loos
and
P. M. W.
Gill
,
J. Chem. Phys.
138
,
164124
(
2013
).
86.
P.-F.
Loos
,
Phys. Rev. A
89
,
052523
(
2014
).
87.
P.-F.
Loos
,
C. J.
Ball
, and
P. M. W.
Gill
,
J. Chem. Phys.
140
,
18A524
(
2014
).
88.
89.
M. M.
Fogler
,
Phys. Rev. Lett.
94
,
056405
(
2005
).
90.
M.
Bockrath
,
D. H.
Cobden
,
J.
Lu
,
A. G.
Rinzler
,
R. E.
Smalley
,
L.
Balents
, and
P. L.
McEuen
,
Nature
397
,
598
(
1999
).
91.
H.
Ishii
,
H.
Kataura
,
H.
Shiozawa
,
H.
Yoshioka
,
H.
Otsubo
,
Y.
Takayama
,
T.
Miyahara
,
S.
Suzuki
,
Y.
Achiba
,
M.
Nakatake
,
T.
Narimura
,
M.
Higashiguchi
,
K.
Shimada
,
H.
Namatame
, and
M.
Taniguchi
,
Nature
426
,
540
(
2003
).
92.
V. V.
Deshpande
and
M.
Bockrath
,
Nat. Phys.
4
,
314
(
2008
).
93.
J. S.
Meyer
and
K. A.
Matveev
,
J. Phys.: Condens. Matter
21
,
023203
(
2009
).
94.
V. V.
Deshpande
,
M.
Bockrath
,
L. I.
Glazman
, and
A.
Yacoby
,
Nature
464
,
209
(
2010
).
95.
P.
Schmelcher
and
L. S.
Cederbaum
,
Phys. Rev. A
41
,
4936
(
1990
).
96.
K. K.
Lange
,
E. I.
Tellgren
,
M. R.
Hoffmann
, and
T.
Helgaker
,
Science
337
,
327
(
2012
).
98.
P.
Schmelcher
and
L. S.
Cederbaum
,
Int. J. Quantum Chem.
64
,
501
(
1997
).
99.
E. I.
Tellgren
,
A.
Soncini
, and
T.
Helgaker
,
J. Chem. Phys.
129
,
154114
(
2008
).
100.
E. I.
Tellgren
,
T.
Helgaker
, and
A.
Soncini
,
Phys. Chem. Chem. Phys.
11
,
5489
(
2009
).
101.
S.
Boblest
,
C.
Schimeczek
, and
G.
Wunner
,
Phys. Rev. A
89
,
012505
(
2014
).
102.
S.
Stopkowicz
,
J.
Gauss
,
K. K.
Lange
,
E. I.
Tellgren
, and
T.
Helgaker
,
J. Chem. Phys.
143
,
074110
(
2015
).
103.
M.
Levy
and
F.
Zahariev
,
Phys. Rev. Lett.
113
,
113002
(
2014
).
104.
N. I.
Gidopoulos
,
P. G.
Papaconstantinou
, and
E. K. U.
Gross
,
Phys. Rev. Lett.
88
,
033003
(
2002
).
105.
P.-F.
Loos
and
P. M. W.
Gill
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
410
(
2016
).
106.
P. M. W.
Gill
and
P.-F.
Loos
,
Theor. Chem. Acc.
131
,
1069
(
2012
).
107.
D.
Agboola
,
A. L.
Knol
,
P. M. W.
Gill
, and
P.-F.
Loos
,
J. Chem. Phys.
143
,
084114
(
2015
).
108.
P.-F.
Loos
,
J. Chem. Phys.
146
,
114108
(
2017
).
109.
P.-F.
Loos
and
P. M. W.
Gill
,
J. Chem. Phys.
135
,
214111
(
2011
).
110.
P.-F.
Loos
,
J. Chem. Phys.
138
,
064108
(
2013
).
111.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
(
Cambridge University Press
,
New York
,
2010
).
112.
F. J. M.
Rogers
and
P.-F.
Loos
,
J. Chem. Phys.
146
,
044114
(
2017
).
113.
F. J. M.
Rogers
,
C. J.
Ball
, and
P.-F.
Loos
,
Phys. Rev. B
93
,
235114
(
2016
).
114.
P. J.
Knowles
and
N. C.
Handy
,
Comput. Phys. Commun.
54
,
75
(
1989
).
115.
P.-F.
Loos
and
P. M. W.
Gill
,
J. Chem. Phys.
131
,
241101
(
2009
).
116.
P.-F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
103
,
123008
(
2009
).
117.
P.-F.
Loos
and
P. M. W.
Gill
,
Chem. Phys. Lett.
500
,
1
(
2010
).
118.
P.-F.
Loos
and
P. M. W.
Gill
,
Phys. Rev. Lett.
105
,
113001
(
2010
).

Supplementary Material

You do not currently have access to this content.