Janus particles (JPs) are a special kind of colloids that incorporate two hemispheres with distinct physical properties. These particles feature a complex phase behavior, and they can be propelled with light by heating them anisotropically when one of the hemispheres is metallic. It has been shown that JPs can be oriented by a homogeneous thermal field. We show using multiscale simulations and theory that the internal mass gradient of the JPs can enhance and even reverse the relative orientation of the particle with the thermal field. This effect is due to a coupling of the internal anisotropy of the particle with the heat flux. Our results help rationalize previous experimental observations and open a route to control the behavior of JPs by exploiting the synergy of particle–fluid interactions and particle internal mass composition.

1.
C.
Casagrande
,
P.
Fabre
,
E.
Raphaël
, and
M.
Veyssié
, “
Janus beads: Realization and behaviour at water/oil interfaces
,”
Europhys. Lett.
9
,
251
255
(
1989
).
2.
J.
Hu
,
S.
Zhou
,
Y.
Sun
,
X.
Fang
, and
L.
Wu
, “
Fabrication, properties and applications of Janus particles
,”
Chem. Soc. Rev.
41
,
4356
4378
(
2012
).
3.
H.-R.
Jiang
,
N.
Yoshinaga
, and
M.
Sano
, “
Active motion of a Janus particle by self-thermophoresis in a defocused laser beam
,”
Phys. Rev. Lett.
105
,
268302
(
2010
).
4.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
, “
Phase diagram of Janus particles
,”
Phys. Rev. Lett.
103
,
237801
(
2009
).
5.
C.
Torney
and
Z.
Neufeld
, “
Transport and aggregation of self-propelled particles in fluid flows
,”
Phys. Rev. Lett.
99
,
078101
(
2007
).
6.
S.
Granick
,
S.
Jiang
, and
Q.
Chen
, “
Janus particles
,”
Phys. Today
62
(
7
),
68
69
(
2009
).
7.
T.
Bickel
,
G.
Zecua
, and
A.
Würger
, “
Polarization of active Janus particles
,”
Phys. Rev. E
89
,
050303
(
2014
), arXiv:1401.7833.
8.
A. P.
Bregulla
and
F.
Cichos
, “
Polarization of thermophoretic swimmers in external temperature fields
,”
Proc. SPIE
9922
,
99221L
(
2016
).
9.
J.
Olarte-Plata
,
J. M.
Rubi
, and
F.
Bresme
, “
Thermophoretic torque in colloidal particles with mass asymmetry
,”
Phys. Rev. E
97
,
052607
(
2018
).
10.
J. D.
Olarte-Plata
and
F.
Bresme
, “
Theoretical description of the Thermomolecular orientation of anisotropic colloids
,”
Phys. Chem. Chem. Phys.
21
,
1131
1140
(
2019
).
11.
O. R.
Gittus
,
J. D.
Olarte-Plata
, and
F.
Bresme
, “
Thermal orientation and thermophoresis of anisotropic colloids: The role of the internal composition
,”
Eur. Phys. J. E
42
,
90
(
2019
).
12.
A.
Malevanets
and
R.
Kapral
, “
Mesoscopic model for solvent dynamics
,”
J. Chem. Phys.
110
,
8605
(
1999
).
13.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
14.
M. K.
Petersen
,
J. B.
Lechman
,
S. J.
Plimpton
,
G. S.
Grest
,
P. J.
in’t Veld
, and
P. R.
Schunk
, “
Mesoscale hydrodynamics via stochastic rotation dynamics: Comparison with Lennard-Jones fluid
,”
J. Chem. Phys.
132
,
174106
(
2010
).
15.
G.
Galliero
and
S.
Volz
, “
Thermodiffusion in model nanofluids by molecular dynamics simulations
,”
J. Chem. Phys.
128
,
064505
(
2008
), arXiv:0711.4580.
16.
M.
Yang
and
M.
Ripoll
, “
Driving forces and polymer hydrodynamics in the Soret effect
,”
J. Phys.: Condens. Matter
24
,
195101
(
2012
).
17.
S.
Duhr
and
D.
Braun
, “
Thermophoretic depletion follows Boltzmann distribution
,”
Phys. Rev. Lett.
96
,
168301
(
2006
).
18.
S. A.
Putnam
,
D. G.
Cahill
, and
G. C. L.
Wong
, “
Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles
,”
Langmuir
23
,
9221
9228
(
2007
).
19.
F.
Römer
,
F.
Bresme
,
J.
Muscatello
,
D.
Bedeaux
, and
J. M.
Rubí
, “
Thermomolecular orientation of nonpolar fluids
,”
Phys. Rev. Lett.
108
,
105901
(
2012
).

Supplementary Material

You do not currently have access to this content.