One versatile route to the creation of two-dimensional crystal structures on the nanometer to micrometer scale is the self-assembly of colloidal particles at an interface. Here, we explore the crystal phases that can be expected from the self-assembly of mixtures of spherical particles of two different sizes, which we map to (additive or non-additive) hard-disk mixtures. We map out the infinite-pressure phase diagram for these mixtures using Floppy Box Monte Carlo simulations to systematically sample candidate crystal structures with up to 12 disks in the unit cell. As a function of the size ratio and the number ratio of the two species of particles, we find a rich variety of periodic crystal structures. Additionally, we identify random tiling regions to predict random tiling quasicrystal stability ranges. Increasing non-additivity both gives rise to additional crystal phases and broadens the stability regime for crystal structures involving a large number of large-small contacts, including random tilings. Our results provide useful guidelines for controlling the self-assembly of colloidal particles at interfaces.

1.
S. C.
Glotzer
and
M. J.
Solomon
,
Nat. Mater.
6
,
557
(
2007
).
2.
D.
Vanmaekelbergh
,
Nano Today
6
,
419
(
2011
).
3.
S.
Sacanna
,
D. J.
Pine
, and
G.-R.
Yi
,
Soft Matter
9
,
8096
(
2013
).
4.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
,
Chem. Rev.
116
,
11220
(
2016
).
5.
M. H.
Kim
,
S. H.
Im
, and
O. O.
Park
,
Adv. Funct. Mater.
15
,
1329
(
2005
).
6.
J.
Yu
,
Q.
Yan
, and
D.
Shen
,
ACS Appl. Mater. Interfaces
2
,
1922
(
2010
).
7.
J.
Zhang
,
Y.
Li
,
X.
Zhang
, and
B.
Yang
,
Adv. Mater.
22
,
4249
(
2010
).
8.
A.
Dong
,
X.
Ye
,
J.
Chen
, and
C. B.
Murray
,
Nano Lett.
11
,
1804
(
2011
).
9.
J.-T.
Zhang
,
L.
Wang
,
D. N.
Lamont
,
S. S.
Velankar
, and
S. A.
Asher
,
Angew. Chem., Int. Ed.
51
,
6117
(
2012
).
10.
V.
Lotito
and
T.
Zambelli
,
Adv. Colloid Interface Sci.
246
,
217
(
2017
).
11.
D. V.
Talapin
,
E. V.
Shevchenko
,
M. I.
Bodnarchuk
,
X.
Ye
,
J.
Chen
, and
C. B.
Murray
,
Nature
461
,
964
(
2009
).
12.
X.
Ye
,
J.
Chen
,
M. E.
Irrgang
,
M.
Engel
,
A.
Dong
,
S. C.
Glotzer
, and
C. B.
Murray
,
Nat. Mater.
16
,
214
(
2017
).
13.
X.
Ye
,
C.
Zhu
,
P.
Ercius
,
S. N.
Raja
,
B.
He
,
M. R.
Jones
,
M. R.
Hauwiller
,
Y.
Liu
,
T.
Xu
, and
A. P.
Alivisatos
,
Nat. Commun.
6
,
10052
(
2015
).
14.
L.
Assoud
,
R.
Messina
, and
H.
Löwen
,
Europhys. Lett.
80
,
48001
(
2007
).
15.
L.
Assoud
,
R.
Messina
, and
H.
Löwen
,
J. Chem. Phys.
129
,
164511
(
2008
).
16.
J.
Fornleitner
,
F.
Lo Verso
,
G.
Kahl
, and
C. N.
Likos
,
Soft Matter
4
,
480
(
2008
).
17.
J.
Fornleitner
,
F.
Lo Verso
,
G.
Kahl
, and
C. N.
Likos
,
Langmuir
25
,
7836
(
2009
).
18.
A. D.
Law
,
D. M. A.
Buzza
, and
T. S.
Horozov
,
Phys. Rev. Lett.
106
,
128302
(
2011
).
19.
C. N.
Likos
and
C. L.
Henley
,
Philos. Mag. B
68
,
85
(
1993
).
20.
O. U.
Uche
,
F. H.
Stillinger
, and
S.
Torquato
,
Physica A
342
,
428
(
2004
).
21.
T.
Dotera
,
T.
Oshiro
, and
P.
Ziherl
,
Nature
506
,
208
(
2014
).
22.
P.-Y.
Wang
and
T. G.
Mason
,
Nature
561
,
94
(
2018
).
23.
L.
Filion
,
M.
Marechal
,
B.
van Oorschot
,
D.
Pelt
,
F.
Smallenburg
, and
M.
Dijkstra
,
Phys. Rev. Lett.
103
,
188302
(
2009
).
24.
J.
de Graaf
,
L.
Filion
,
M.
Marechal
,
R.
van Roij
, and
M.
Dijkstra
,
J. Chem. Phys.
137
,
214101
(
2012
).
25.
D.
Salgado-Blanco
and
C. I.
Mendoza
,
Soft Matter
11
,
889
(
2015
).
26.
M.
Dijkstra
,
Phys. Rev. E
58
,
7523
(
1998
).
27.
A. A.
Louis
,
R.
Finken
, and
J. P.
Hansen
,
Phys. Rev. E
61
,
R1028
(
2000
).
28.
F.
Saija
and
P. V.
Giaquinta
,
J. Chem. Phys.
117
,
5780
(
2002
).
29.
A.
Widmer-Cooper
and
P.
Harrowell
,
J. Chem. Phys.
135
,
224515
(
2011
).
30.
S.
Torquato
and
Y.
Jiao
,
Phys. Rev. E
80
,
041104
(
2009
).
31.
M.
Marechal
,
U.
Zimmermann
, and
H.
Löwen
,
J. Chem. Phys.
136
,
144506
(
2012
).
32.
E.
Bianchi
,
G.
Doppelbauer
,
L.
Filion
,
M.
Dijkstra
, and
G.
Kahl
,
J. Chem. Phys.
136
,
214102
(
2012
).
33.
T.
Vissers
,
Z.
Preisler
,
F.
Smallenburg
,
M.
Dijkstra
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
164505
(
2013
).
34.
I.
Staneva
and
D.
Frenkel
,
J. Chem. Phys.
143
,
194511
(
2015
).
35.
A.
Gabriëlse
,
H.
Löwen
, and
F.
Smallenburg
,
Materials
10
,
1280
(
2017
).
36.
W.
Shen
,
J.
Antonaglia
,
J. A.
Anderson
,
M.
Engel
,
G.
van Anders
, and
S. C.
Glotzer
,
Soft Matter
15
,
2571
(
2019
).
37.
L. F.
Toth
,
Math. Z.
48
,
676
(
1943
).
38.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
39.
G.
Blind
,
J. Reine Angew. Math.
1969
(
236)
,
145
.
40.
T.
Fernique
,
A.
Hashemi
, and
O.
Sizova
, in
Discrete Geometry for Computer Imagery
, edited by
M.
Couprie
,
J.
Cousty
,
Y.
Kenmochi
, and
N.
Mustafa
(
Springer International Publishing
,
Cham
,
2019
), Vol. 11414, pp.
420
431
.
41.
M.
Widom
,
Phys. Rev. Lett.
70
,
2094
(
1993
).
42.
H.
Kawamura
,
Prog. Theor. Phys.
70
,
352
(
1983
).
43.
P.
Kalugin
, “
The square-triangle random-tiling model in the thermodynamic limit
,”
J. Phys. A
27
,
3599
(
1994
).
44.
B.
Nienhuis
,
Phys. Rep.
301
,
271
(
1998
).
45.
A. B.
Hopkins
,
F. H.
Stillinger
, and
S.
Torquato
,
Phys. Rev. E
85
,
021130
(
2012
).
46.
A. V.
Tkachenko
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
10269
(
2016
).
47.
T.
Kennedy
,
Discrete Comput. Geom.
35
,
255
(
2006
).
48.
T.
Fernique
and
N.
Bédaride
, arXiv:2002.07168 (
2020
).

Supplementary Material

You do not currently have access to this content.