Alloys are active in CO2 electroreduction due to their unique electronic and geometric structures. Nevertheless, CO2 reduction selectivity is still low due to the low concentration of CO2 near the catalyst surface and the high energy barrier for CO2 activation. This paper describes an AuCu nanochain aerogel (NC–AuCu) with abundant grain boundaries (GBs) that promote the accumulation and activation of CO2 for further electrochemical reduction, employing in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and density functional theory calculations. GBs can induce a strong local electric field to concentrate the electrolyte cations and thus accumulate CO2 near the catalyst surface. NC–AuCu exhibits a superior Faradaic efficiency of close to 100% for CO2 electroreduction to CO at an extremely low overpotential of 110 mV with a high CO partial current density of 28.6 mA cm−2 in a flow cell. Coupling with a Si solar cell to convert solar energy to CO, a very high conversion efficiency of ∼13.0% is achieved. It potentially provides broad interest for further academic research and industry applications.

1.
D. D.
Zhu
,
J. L.
Liu
, and
S. Z.
Qiao
,
Adv. Mater.
28
,
3423
(
2016
).
2.
J.
Gong
,
L.
Zhang
, and
Z. J.
Zhao
,
Angew. Chem., Int. Ed.
56
,
11326
(
2017
).
3.
X.
Zheng
,
P.
De Luna
,
F. P.
García de Arquer
,
B.
Zhang
,
N.
Becknell
,
M. B.
Ross
,
Y.
Li
,
M. N.
Banis
,
Y.
Li
,
M.
Liu
,
O.
Voznyy
,
C. T.
Dinh
,
T.
Zhuang
,
P.
Stadler
,
Y.
Cui
,
X.
Du
,
P.
Yang
, and
E. H.
Sargent
,
Joule
1
,
794
(
2017
).
4.
A. A.
Peterson
,
F.
Abild-Pedersen
,
F.
Studt
,
J.
Rossmeisl
, and
J. K.
Nørskov
,
Energy Environ. Sci.
3
,
1311
(
2010
).
5.
C. W.
Li
and
M. W.
Kanan
,
J. Am. Chem. Soc.
134
,
7231
(
2012
).
6.
Y.
Hori
,
H.
Wakebe
,
T.
Tsukamoto
, and
O.
Koga
,
Electrochim. Acta
39
,
1833
(
1994
).
7.
See https://goldprice.org/ for Gold Price, 2019.
8.
D.
Kim
,
J.
Resasco
,
Y.
Yu
,
A. M.
Asiri
, and
P.
Yang
,
Nat. Commun.
5
,
4948
(
2014
).
9.
D.
Kim
,
C.
Xie
,
N.
Becknell
,
Y.
Yu
,
M.
Karamad
,
K.
Chan
,
E. J.
Crumlin
,
J. K.
Nørskov
, and
P.
Yang
,
J. Am. Chem. Soc.
139
,
8329
(
2017
).
10.
C.
Shan
,
E. T.
Martin
,
D. G.
Peters
, and
J. M.
Zaleski
,
Chem. Mater.
29
,
6030
(
2017
).
11.
S.
Lee
,
G.
Park
, and
J.
Lee
,
ACS Catal.
7
,
8594
(
2017
).
12.
Z. B.
Hoffman
,
T. S.
Gray
,
K. B.
Moraveck
,
T. B.
Gunnoe
, and
G.
Zangari
,
ACS Catal.
7
,
5381
(
2017
).
13.
A.
Vasileff
,
C.
Xu
,
Y.
Jiao
,
Y.
Zheng
, and
S.-Z.
Qiao
,
Chem
4
,
1809
(
2018
).
14.
M.
Liu
,
Y.
Pang
,
B.
Zhang
,
P.
De Luna
,
O.
Voznyy
,
J.
Xu
,
X.
Zheng
,
C. T.
Dinh
,
F.
Fan
,
C.
Cao
,
F. P. G.
de Arquer
,
T. S.
Safaei
,
A.
Mepham
,
A.
Klinkova
,
E.
Kumacheva
,
T.
Filleter
,
D.
Sinton
,
S. O.
Kelley
, and
E. H.
Sargent
,
Nature
537
,
382
(
2016
).
15.
K.
Sun
,
T.
Cheng
,
L.
Wu
,
Y.
Hu
,
J.
Zhou
,
A.
Maclennan
,
Z.
Jiang
,
Y.
Gao
,
W. A.
Goddard
 III
, and
Z.
Wang
,
J. Am. Chem. Soc.
139
,
15608
(
2017
).
16.
B.
O’Regan
,
M.
Grätzel
, and
D.
Fitzmaurice
,
Chem. Phys. Lett.
183
,
89
(
1991
).
17.
J. S.
Lee
,
U.
Anselmi-Tamburini
,
Z. A.
Munir
, and
S.
Kim
,
Electrochem. Solid-State Lett.
9
,
J34
(
2006
).
18.
Y.
Zhou
,
S. G.
Sarwat
,
G. S.
Jung
,
M. J.
Buehler
,
H.
Bhaskaran
, and
J. H.
Warner
,
ACS Appl. Mater. Interfaces
11
,
10189
(
2019
).
19.
B.
Cai
,
D.
Wen
,
W.
Liu
,
A.-K.
Herrmann
,
A.
Benad
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
54
,
13101
(
2015
).
20.
W.
Liu
,
A.-K.
Herrmann
,
D.
Geiger
,
L.
Borchardt
,
F.
Simon
,
S.
Kaskel
,
N.
Gaponik
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
51
,
5743
(
2012
).
21.
S.
Fu
,
C.
Zhu
,
D.
Du
, and
Y.
Lin
,
ACS Appl. Mater. Interfaces
7
,
13842
(
2015
).
22.
C.-T.
Wang
and
R.
Wiley
,
J. Catal.
202
,
211
(
2001
).
23.
M. L.
Anderson
,
R. M.
Stroud
, and
D. R.
Rolison
,
Nano Lett.
2
,
235
(
2002
).
24.
A.
Eychmuller
,
B.
Cai
,
R.
Hubner
,
K.
Sasaki
,
Y.
Zhang
,
D.
Su
,
C.
Ziegler
,
M. B.
Vukmirovic
,
B.
Rellinghaus
, and
R. R.
Adzic
,
Angew. Chem., Int. Ed.
57
,
2963
(
2017
).
25.
W.
Liu
,
P.
Rodriguez
,
L.
Borchardt
,
A.
Foelske
,
J.
Yuan
,
A.-K.
Herrmann
,
D.
Geiger
,
Z.
Zheng
,
S.
Kaskel
,
N.
Gaponik
,
R.
Kötz
,
T. J.
Schmidt
, and
A.
Eychmüller
,
Angew. Chem., Int. Ed.
52
,
9849
(
2013
).
26.
Z.-S.
Wu
,
S.
Yang
,
Y.
Sun
,
K.
Parvez
,
X.
Feng
, and
K.
Müllen
,
J. Am. Chem. Soc.
134
,
9082
(
2012
).
27.
W.
Liu
,
A.-K.
Herrmann
,
N. C.
Bigall
,
P.
Rodriguez
,
D.
Wen
,
M.
Oezaslan
,
T. J.
Schmidt
,
N.
Gaponik
, and
A.
Eychmüller
,
Acc. Chem. Res.
48
,
154
(
2015
).
28.
J.
Wang
,
F.
Chen
,
Y.
Jin
, and
R. L.
Johnston
,
ChemSusChem
11
,
1354
(
2018
).
29.
X.
Feng
,
K.
Jiang
,
S.
Fan
, and
M. W.
Kanan
,
ACS Cent. Sci.
2
,
169
(
2016
).
30.
X.
Feng
,
K.
Jiang
,
S.
Fan
, and
M. W.
Kanan
,
J. Am. Chem. Soc.
137
,
4606
(
2015
).
31.
M. G.
Kibria
,
C.-T.
Dinh
,
A.
Seifitokaldani
,
P.
De Luna
,
T.
Burdyny
,
R.
Quintero-Bermudez
,
M. B.
Ross
,
O. S.
Bushuyev
,
F. P.
García de Arquer
,
P.
Yang
,
D.
Sinton
, and
E. H.
Sargent
,
Adv. Mater.
30
,
1804867
(
2018
).
32.
W.
Zhu
,
L.
Zhang
,
P.
Yang
,
C.
Hu
,
H.
Dong
,
Z.-J.
Zhao
,
R.
Mu
, and
J.
Gong
,
ACS Energy Lett.
3
,
2144
(
2018
).
33.
H.
Wang
,
B.
Jiang
,
T.-T.
Zhao
,
K.
Jiang
,
Y.-Y.
Yang
,
J.
Zhang
,
Z.
Xie
, and
W.-B.
Cai
,
ACS Catal.
7
,
2033
(
2017
).
34.
M.
Dunwell
,
Q.
Lu
,
J. M.
Heyes
,
J.
Rosen
,
J. G.
Chen
,
Y.
Yan
,
F.
Jiao
, and
B.
Xu
,
J. Am. Chem. Soc.
139
,
3774
(
2017
).
35.
Y.-Y.
Yang
,
J.
Ren
,
H.-X.
Zhang
,
Z.-Y.
Zhou
,
S.-G.
Sun
, and
W.-B.
Cai
,
Langmuir
29
,
1709
(
2013
).
36.
W.
Deng
,
L.
Zhang
,
L.
Li
,
S.
Chen
,
C.
Hu
,
Z.-J.
Zhao
,
T.
Wang
, and
J.
Gong
,
J. Am. Chem. Soc.
141
,
2911
(
2019
).
37.
S.
Zhu
,
T.
Li
,
W.-B.
Cai
, and
M.
Shao
,
ACS Energy Lett.
4
,
682
(
2019
).
38.
T.
Burdyny
and
W. A.
Smith
,
Energy Environ. Sci.
12
,
1442
(
2019
).
39.
C.-T.
Dinh
,
F. P.
García de Arquer
,
D.
Sinton
, and
E. H.
Sargent
,
ACS Energy Lett.
3
,
2835
(
2018
).
40.
Y.
Chen
,
C. W.
Li
, and
M. W.
Kanan
,
J. Am. Chem. Soc.
134
,
19969
(
2012
).
41.
W.
Zhu
,
R.
Michalsky
,
Ö.
Metin
,
H.
Lv
,
S.
Guo
,
C. J.
Wright
,
X.
Sun
,
A. A.
Peterson
, and
S.
Sun
,
J. Am. Chem. Soc.
135
,
16833
(
2013
).
42.
W.
Zhu
,
L.
Zhang
,
P.
Yang
,
C.
Hu
,
Z.
Luo
,
X.
Chang
,
Z.-J.
Zhao
, and
J.
Gong
,
Angew. Chem., Int. Ed.
130
,
11718
(
2018
).
43.
F.
Calle-Vallejo
,
J.
Tymoczko
,
V.
Colic
,
Q. H.
Vu
,
M. D.
Pohl
,
K.
Morgenstern
,
D.
Loffreda
,
P.
Sautet
,
W.
Schuhmann
, and
A. S.
Bandarenka
,
Science
350
,
185
(
2015
).
44.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
45.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).

Supplementary Material

You do not currently have access to this content.