The differential capacitance of an electric double layer formed by an aqueous solution of KNO3 on a glassy carbon electrode is measured by impedance analysis at constant frequency. Results are obtained at electrolyte concentrations of 0.1 mol/dm3, 0.5 mol/dm3, and 1.0 mol/dm3, and at a series of temperatures, viz., 288 K, 298 K, 308 K, 318 K, and 328 K. The differential capacitance envelopes reveal a rich, complex pattern of maxima, minima, and local minima, whose magnitude and position change with a change in solution concentration. At the two lower concentrations, the temperature dependence of the capacitance, for example, at zero electrode potential, shows an alternating positive–negative behavior, while at the highest concentration of 1.0 mol/dm3, the slope of the differential capacitance–electrode potential curve is always positive. The experimental results are supplemented by a numerical grand canonical Monte Carlo simulation study of a restricted primitive model double layer but with an off-center cationic charge achieved by displacing the charge center from the ion sphere center toward its surface. The simulations, performed at the electrolyte concentration of 1.0 mol/dm3 and constant cation charge center displacement, and at varying electrode potentials and temperatures, show, in general, a negative temperature dependence of the differential capacitance. However, this temperature dependence can also be positive for a negative electrode charge and for a sufficiently large gradient of the cation charge center displacement with temperature. This feature is seen to be associated with an increase in the entropy of formation of the double layer.

1.
D. C.
Grahame
,
J. Am. Chem. Soc.
76
,
4819
(
1954
).
2.
D. C.
Grahame
,
J. Am. Chem. Soc.
79
,
2093
(
1957
).
3.
M. T.
Alam
,
M.
Mominul Islam
,
T.
Okajima
, and
T.
Ohsaka
,
Electrochem. Commun.
9
,
2370
(
2007
).
4.
M. T.
Alam
,
M. M.
Islam
,
T.
Okajima
, and
T.
Ohsaka
,
J. Phys. Chem. C
111
,
18326
(
2007
).
5.
M. M.
Islam
,
M. T.
Alam
, and
T.
Ohsaka
,
J. Phys. Chem. C
112
,
16568
(
2008
).
6.
M. T.
Alam
,
M. M.
Islam
,
T.
Okajima
, and
T.
Ohsaka
,
J. Phys. Chem. C
112
,
16600
(
2008
).
7.
M. T.
Alam
,
M. M.
Islam
,
T.
Okajima
, and
T.
Oshaka
,
J. Phys. Chem. C
113
,
6596
(
2010
).
8.
V.
Lockett
,
R.
Sedev
,
J.
Ralston
,
M.
Horne
, and
T.
Rodopoulos
,
J. Phys. Chem. C
112
,
7486
(
2008
).
9.
V.
Lockett
,
M.
Horne
,
R.
Sedev
,
T.
Rodopoulos
, and
J.
Ralston
,
Phys. Chem. Chem. Phys.
12
,
12499
(
2010
).
10.
M. S.
Loth
,
B.
Skinner
, and
B. I.
Shklovskii
,
Phys. Rev. E
82
,
056102
(
2010
).
11.
J. A.
Harrison
,
J. E. B.
Randles
, and
D. J.
Schiffrin
,
J. Electroanal. Chem. Interfacial Electrochem.
48
,
359
(
1973
).
12.
Z.
Borkowska
,
R. M.
de Nobriga
, and
W. R.
Fawcett
,
J. Electroanal. Chem. Interfacial Electrochem.
124
,
263
(
1981
).
13.
L. B.
Bhuiyan
and
S.
Lamperski
,
Mol. Phys.
111
,
807
(
2013
).
14.
15.
D. L.
Chapman
,
London, Edinburgh Dublin Philos. Mag. J. Sci.
25
,
475
(
1913
).
16.
O.
Stern
,
Z. Electrochem. Angw. Phys. Chem.
30
,
508
(
1924
).
17.
C. W.
Outhwaite
and
L. B.
Bhuiyan
,
J. Chem. Soc., Faraday Trans. 2
79
,
707
(
1983
).
18.
J.
Vatamanu
,
O.
Borodin
, and
G. D.
Smith
,
J. Am. Chem. Soc.
132
,
14825
(
2010
).
19.
J.
Vatamanu
,
L.
Xing
,
W.
Li
, and
D.
Bedrov
,
Phys. Chem. Chem. Phys.
16
,
5174
(
2014
).
20.
X.
Liu
,
Y.
Han
, and
T.
Yan
,
ChemPhysChem
15
,
2503
(
2014
).
21.
K. R.
Painter
,
P.
Ballone
,
M. P.
Tosi
,
P. J.
Grout
, and
N. H.
March
,
Surf. Sci.
133
,
89
(
1983
).
22.
P.
Ballone
,
G.
Pastore
,
M. P.
Tosi
,
K. R.
Painter
,
P. J.
Grout
, and
N. H.
March
,
Phys. Chem. Liq.
13
,
269
(
1984
).
23.
N. H.
March
and
M. P.
Tosi
,
Coulomb Liquids
(
Academic
,
London
,
1984
).
24.
A. D.
Graves
and
D.
Inman
,
J. Electroanal. Chem. Interfacial Electrochem.
25
,
357
(
1970
).
25.
D.
Boda
,
D.
Henderson
, and
K.-Y.
Chan
,
J. Chem. Phys.
110
,
5346
(
1999
).
26.
D.
Boda
,
D.
Henderson
,
K.-Y.
Chan
, and
D. T.
Wasan
,
Chem. Phys. Lett.
308
,
473
(
1999
).
28.
J.
Resko-Zygmunt
,
S.
Sokolowski
,
D.
Henderson
, and
D.
Boda
,
J. Chem. Phys.
122
,
084504
(
2005
).
29.
L. B.
Bhuiyan
,
C. W.
Outhwaite
, and
D.
Henderson
,
J. Chem. Phys.
123
,
034704
(
2005
).
30.
M.
Chen
,
Z. A. H.
Goodwin
,
G.
Feng
, and
A. A.
Kornyshev
,
J. Electroanal. Chem.
819
,
347
(
2017
).
31.
F.
Silva
,
C.
Gomes
,
M.
Figueiredo
,
R.
Costa
,
A.
Martins
, and
C. M.
Pereira
,
J. Electroanal. Chem.
622
,
153
(
2008
).
32.
R.
Costa
,
C. M.
Pereira
, and
F.
Silva
,
Phys. Chem. Chem. Phys.
12
,
11125
(
2010
).
33.
C.
Gomes
,
R.
Costa
,
C. M.
Pereira
, and
A. F.
Silva
,
RSC Adv.
4
,
28914
(
2014
).
34.
M.
Drüschler
,
N.
Borisenko
,
J.
Wallauer
,
C.
Winter
,
B.
Huber
,
F.
Endres
, and
B.
Roling
,
Phys. Chem. Chem. Phys.
14
,
5090
(
2012
).
35.
R.
Costa
,
C. M.
Pereira
, and
F.
Silva
,
RSC Adv.
3
,
11697
(
2013
).
36.
R.
Costa
,
C. M.
Pereira
, and
A.
Fernando Silva
,
Electrochem. Commun.
57
,
10
(
2015
).
37.
Z.
Borkowska
and
W. R.
Fawcett
,
Can. J. Chem.
60
,
1787
(
1982
).
38.
A.
Hamelin
,
L.
Stoicoviciu
, and
F.
Silva
,
J. Electroanal. Chem. Interfacial Electrochem.
229
,
107
(
1987
).
39.
A.
Hamelin
,
L.
Doubova
,
L.
Stoicoviciu
, and
S.
Trasatti
,
J. Electroanal. Chem. Interfacial Electrochem.
244
,
133
(
1988
).
40.
A. M.
Fleshman
and
N. A.
Mauro
,
J. Mol. Liq.
279
,
23
(
2019
).
41.
M. M.
Islam
,
T.
Okajima
, and
T.
Ohsaka
,
J. Phys. Chem. B
108
,
19425
(
2004
).
42.
M. S.
Saha
and
T.
Ohsaka
,
Electrochim. Acta
50
,
4746
(
2006
).
43.
G. C.
Lica
and
Y. J.
Tong
,
J. Electroanal. Chem.
688
,
349
(
2013
).
44.
S.
Lamperski
,
L. B.
Bhuiyan
,
D.
Henderson
, and
M.
Kaja
,
Langmuir
33
,
11554
(
2017
).
45.
S.
Lamperski
,
L. B.
Bhuiyan
, and
D.
Henderson
,
J. Chem. Phys.
149
,
084706
(
2018
).
46.
S.
Lamperski
,
D.
Henderson
, and
L. B.
Bhuiyan
,
Mol. Phys.
117
,
3527
(
2019
);
S.
Lamperski
,
D.
Henderson
, and
L. B.
Bhuiyan
,
Mol. Phys.
21
,
1087
(
1953
).
47.
M. P.
Allen
and
D. J.
Tildsley
,
Computer Simulation of Liquids
(
Oxford University Press
,
New York
,
1989
).
48.
D. W.
Heermann
,
Computer Simulation Methods in Theoretical Physics
(
Springer-Verlag Berlin
,
Heidelberg
,
1990
).
49.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
San Diego
,
1996
).
50.
51.
G. M.
Torrie
and
J. P.
Valleau
,
J. Chem. Phys.
73
,
5807
(
1980
).
52.
D.
Boda
,
K.-Y.
Chan
, and
D.
Henderson
,
J. Chem. Phys.
109
,
7362
(
1998
).
53.
M. A.
Pope
,
C.
Punckt
, and
I. A.
Aksay
,
J. Phys. Chem. C
115
,
20326
(
2011
).
54.
J. D.
Wiggins-Camacho
and
K. J.
Stevenson
,
J. Phys. Chem. C
113
,
19082
(
2009
).
55.
A. I.
Sotnikov
and
O. A.
Esin
, in
Physical Chemistry and Electrochemistry of Molten Salts and Slags
(
Khimia
,
Leningrad
,
1968
), p.
209
.
56.
H. R.
Zebardast
,
S.
Rogak
, and
E.
Asselin
,
J. Electroanal. Chem.
724
,
36
(
2014
).
57.
S.
Trasatti
and
E.
Lust
, in
Modern Aspects of Electrochemistry
(
Kluwer Academic/Plenum
,
New York
,
1999
), Vol. 33.
58.
S.
Lamperski
,
L. B.
Bhuiyan
,
D.
Henderson
,
M.
Kaja
, and
W.
Silvestre-Alcantara
,
Electrochim. Acta
226
,
98
(
2017
).
59.
S.
Lamperski
,
C. W.
Outhwaite
, and
L. B.
Bhuiyan
,
J. Phys. Chem. B
113
,
8925
(
2009
).
60.
C. W.
Outhwaite
,
S.
Lamperski
, and
L. B.
Bhuiyan
,
Mol. Phys.
109
,
21
(
2011
).
61.
D.
Henderson
,
S.
Lamperski
,
Z.
Jin
, and
J.
Wu
,
J. Phys. Chem. B
115
,
12911
(
2011
).
62.
D.
Henderson
,
S.
Lamperski
,
L.
Bari Bhuiyan
, and
J.
Wu
,
J. Chem. Phys.
138
,
144704
(
2013
).
63.
W.
Silvestre-Alcantara
,
L. B.
Bhuiyan
,
S.
Lamperski
,
M.
Kaja
, and
D.
Henderson
,
Condens. Matter Phys.
19
,
13603
(
2016
).
You do not currently have access to this content.