Molecular multibond dissociation displays a variety of electron correlation effects posing a challenge for theoretical description. We propose a CASΠ(M)DFT approach, which includes these effects in an efficient way by combining the complete active space self-consistent field method with density functional theory (DFT). Within CASΠ(M)DFT, a small complete active space (CAS) accounts for the long-range intrabond and middle-range interbond nondynamic correlation in the stretched bonds. The common short-range dynamic correlation is calculated with the Lee–Yang–Parr (LYP) correlation DFT functional corrected for the suppression of dynamic correlation with nondynamic correlation. The remaining middle-range interbond dynamic correlation is evaluated with the modified LYP functional of the bond densities. As a result, CASΠ(M)DFT potential energy curves (PECs) calculated in the relatively small triple-zeta basis closely reproduce the benchmark complete basis set PECs for the following prototype multibonded molecules: N2, CO, H2O, and C2.

1.
N. C.
Handy
and
A. J.
Cohen
,
Mol. Phys.
99
,
403
(
2001
).
2.
P. A.
Schultz
and
R. P.
Messmer
,
J. Am. Chem. Soc.
115
,
10938
(
1993
).
3.
K.
Raghavachari
and
J. B.
Anderson
,
J. Phys. Chem.
100
,
12960
(
1996
).
4.
K.
Pernal
,
O. V.
Gritsenko
, and
R.
van Meer
,
J. Chem. Phys.
151
,
164122
(
2019
).
5.
O. V.
Gritsenko
,
R.
van Meer
, and
K.
Pernal
,
Phys. Rev. A
98
,
062510
(
2018
).
6.
O. V.
Gritsenko
,
R.
van Meer
, and
K.
Pernal
,
Chem. Phys. Lett.
716
,
227
(
2019
).
7.
O. V.
Gritsenko
and
K.
Pernal
,
J. Chem. Phys.
151
,
024111
(
2019
).
8.
E.
Fromager
,
J.
Toulouse
, and
H. J.
Jensen
,
J. Chem. Phys.
126
,
074111
(
2007
).
9.
G.
Li Manni
,
R. K.
Carlson
,
S.
Luo
,
D.
Ma
,
J.
Olsen
,
D. G.
Truhlar
, and
L.
Gagliardi
,
J. Chem. Theory Comput.
10
,
3669
(
2014
).
10.
E.
Hedegård
,
S.
Knecht
,
J. S.
Kielberg
,
H. J.
Jensen
, and
M.
Reiher
,
J. Chem. Phys.
142
,
224108
(
2015
).
11.
A.
Ferté
,
E.
Giner
, and
J.
Toulouse
,
J. Chem. Phys.
150
,
084103
(
2019
).
12.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
13.
B.
Miehlich
,
A.
Savin
,
H.
Stoll
, and
H.
Preuss
,
Chem. Phys. Lett.
157
,
200
(
1989
).
14.
A. D.
Becke
,
A.
Savin
, and
H.
Stoll
,
Theor. Chim. Acta
91
,
147
(
1995
).
15.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1275
(
1974
).
16.
R.
van Meer
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
148
,
104102
(
2018
).
17.
Y. F.
Liu
,
Y.
Jia
,
D. H.
Shi
, and
J. F.
Sun
,
J. Quant. Spectrosc. Radiat. Transfer
112
,
2296
(
2011
).
18.
J. S.
Boschen
,
D.
Theis
,
K.
Ruedenberg
, and
T. L.
Windus
,
Theor. Chem. Acc.
133
,
1425
(
2014
).
19.
L.
Bytautas
and
K.
Ruedenberg
,
J. Chem. Phys.
122
,
154110
(
2005
).
20.
C. X.
Almora-Díaz
,
A.
Ramírez-Solís
, and
C. F.
Bunge
,
Phys. Chem. Chem. Phys.
21
,
4953
(
2019
).
21.
R.
Colle
and
O.
Salvetti
,
Theor. Chim. Acta
37
,
329
(
1975
).
22.
G.
Hunter
,
Int. J. Quantum Chem.
9
,
237
(
1975
).
23.
M.
Buijse
and
E. J.
Baerends
,
Mol. Phys.
100
,
401
(
2002
).
24.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
25.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
26.
W. P.
Kraemer
and
B. O.
Roos
,
Chem. Phys.
118
,
345
(
1987
).
27.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
(
Van Nostrand-Reinhold
,
New York
,
1979
).
28.
M.
Douay
,
R.
Nietmann
, and
P.
Bernath
,
J. Mol. Spectrosc.
131
,
261
(
1988
).
29.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1288
(
1974
).
You do not currently have access to this content.