CRYSTAL is a periodic ab initio code that uses a Gaussian-type basis set to express crystalline orbitals (i.e., Bloch functions). The use of atom-centered basis functions allows treating 3D (crystals), 2D (slabs), 1D (polymers), and 0D (molecules) systems on the same grounds. In turn, all-electron calculations are inherently permitted along with pseudopotential strategies. A variety of density functionals are implemented, including global and range-separated hybrids of various natures and, as an extreme case, Hartree–Fock (HF). The cost for HF or hybrids is only about 3–5 times higher than when using the local density approximation or the generalized gradient approximation. Symmetry is fully exploited at all steps of the calculation. Many tools are available to modify the structure as given in input and simplify the construction of complicated objects, such as slabs, nanotubes, molecules, and clusters. Many tensorial properties can be evaluated by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, first and second hyperpolarizabilities, etc. The calculation of infrared and Raman spectra is available, and the intensities are computed analytically. Automated tools are available for the generation of the relevant configurations of solid solutions and/or disordered systems. Three versions of the code exist: serial, parallel, and massive-parallel. In the second one, the most relevant matrices are duplicated on each core, whereas in the third one, the Fock matrix is distributed for diagonalization. All the relevant vectors are dynamically allocated and deallocated after use, making the code very agile. CRYSTAL can be used efficiently on high performance computing machines up to thousands of cores.

1.
R. A.
Evarestov
,
Quantum Chemistry of Solids. LCAO Treatment of Crystals and Nanostructures
, Springer Series in Solid State Sciences Vol. 153 (
Springer Berlin Heidelberg
,
2012
).
2.
C.
Pisani
,
R.
Dovesi
, and
C.
Roetti
,
Hartree-Fock Ab Initio Treatment of Crystalline Systems
, Lecture Notes in Chemistry Series Vol. 48 (
Springer Berlin
,
Heidelberg; New York; Berlin
,
1988
).
3.
R.
Dovesi
,
C.
Pisani
,
C.
Roetti
,
M.
Causà
, and
V.
Saunders
,
CRYSTAL88
, QCPE Program No. 577 (
Indiana University
,
Bloomington, IN
,
1988
).
4.
R.
Dovesi
,
A.
Erba
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
L.
Maschio
,
M.
Rérat
,
S.
Casassa
,
J.
Baima
,
S.
Salustro
, and
B.
Kirtman
, “
Quantum-mechanical condensed matter simulations with CRYSTAL
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1360
(
2018
).
5.
R.
Dovesi
,
V. R.
Saunders
,
C.
Roetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
B.
Civalleri
,
K.
Doll
,
N. M.
Harrison
,
I. J.
Bush
,
P.
D’Arco
,
M.
Llunell
,
M.
Causà
,
Y.
Noël
,
L.
Maschio
,
A.
Erba
,
M.
Rérat
, and
S.
Casassa
,
CRYSTAL17 User’s Manual
(
Università di Torino
,
Torino
,
2017
), http://www.crystal.unito.it.
6.
J. P.
Perdew
, “
Jacob’s ladder of density functional approximations for the exchange-correlation energy
,”
AIP Conf. Proc.
577
,
1
20
(
2001
).
7.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
8.
B.
Civalleri
,
C. M.
Zicovich-Wilson
,
L.
Valenzano
, and
P.
Ugliengo
, “
B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals
,”
CrystEngComm
10
,
405
410
(
2008
).
9.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
10.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
, “
Dispersion-corrected mean-field electronic structure methods
,”
Chem. Rev.
116
,
5105
5154
(
2016
).
11.
E.
Caldeweyher
and
J. G.
Brandenburg
, “
Simplified DFT methods for consistent structures and energies of large systems
,”
J. Phys.: Condens. Matter
30
,
213001
(
2018
).
12.
L.
Doná
,
J. G.
Brandenburg
, and
B.
Civalleri
, “
Extending and assessing composite electronic structure methods to the solid state
,”
J. Chem. Phys.
151
,
121101
(
2019
).
13.
R. A.
Evarestov
,
Theoretical Modeling of Inorganic Nanostructures. Symmetry and Ab Initio Calculations of Nanolayers, Nanotubes and Nanowires
, NanoScience and Technology (
Springer Berlin Heidelberg
,
2015
).
14.
R.
Dovesi
, “
On the role of symmetry in the ab initio Hartree-Fock linear-combination-of-atomic-orbitals treatment of periodic systems
,”
Int. J. Quantum Chem.
29
,
1755
1774
(
1986
).
15.
C. M.
Zicovich-Wilson
and
R.
Dovesi
, “
On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. I. The construction of the symmetrized orbitals
,”
Int. J. Quantum Chem.
67
,
299
309
(
1998
).
16.
C. M.
Zicovich-Wilson
and
R.
Dovesi
, “
On the use of symmetry-adapted crystalline orbitals in SCF-LCAO periodic calculations. II. Implementation of the self-consistent-field scheme and examples
,”
Int. J. Quantum Chem.
67
,
311
320
(
1998
).
17.
C. M.
Zicovich-Wilson
,
Y.
Noel
,
A. M.
Ferrari
,
R.
Orlando
,
M. D. L.
Pierre
, and
R.
Dovesi
, “
On the use of symmetry in SCF calculations. The case of fullerenes and nanotubes
,”
AIP Conf. Proc.
1456
,
248
255
(
2012
).
18.
R.
Orlando
,
M. D. L.
Pierre
,
C. M.
Zicovich-Wilson
,
A.
Erba
, and
R.
Dovesi
, “
On the full exploitation of symmetry in periodic (as well as molecular) self-consistent-field ab initio calculations
,”
J. Chem. Phys.
141
,
104108
(
2014
).
19.
P.
D’Arco
,
S.
Mustapha
,
M.
Ferrabone
,
Y.
Noël
,
M. D. L.
Pierre
, and
R.
Dovesi
, “
Symmetry and random sampling of symmetry independent configurations for the simulation of disordered solids
,”
J. Phys.: Condens. Matter
25
,
355401
(
2013
).
20.
V.
Lacivita
,
P.
D’Arco
,
S.
Mustapha
, and
D. F.
Bernardes
, “
On the use of the symmetry-adapted Monte Carlo for an effective sampling of large configuration spaces. The test cases of calcite structured carbonates and melilites
,”
Comput. Mater. Sci.
126
,
217
227
(
2017
).
21.
R.
Dovesi
,
R.
Orlando
,
A.
Erba
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
S.
Casassa
,
L.
Maschio
,
M.
Ferrabone
,
M. D. L.
Pierre
,
P.
D’Arco
,
Y.
Noël
,
M.
Causà
,
M.
Rérat
, and
B.
Kirtman
, “
CRYSTAL14: A program for the ab initio investigation of crystalline solids
,”
Int. J. Quantum Chem.
114
,
1287
1317
(
2014
).
22.
Tutorials on how to run specific types of calculations with CRYSTAL can be found at http://www.crystal.unito.it/tutorials, 2017.
23.
C.
Pisani
and
R.
Dovesi
, “
Exact-exchange Hartree-Fock calculations for periodic systems. I. Illustration of the method
,”
Int. J. Quantum Chem.
17
,
501
516
(
1980
).
24.
C.
Pisani
,
R.
Dovesi
, and
C.
Roetti
, “
Exact-exchange Hartree-Fock calculations for periodic systems. II. Results for graphite and hexagonal boron nitride
,”
Int. J. Quantum Chem.
17
,
517
529
(
1980
).
25.
R.
Dovesi
,
C.
Pisani
,
C.
Roetti
, and
V. R.
Saunders
, “
Treatment of Coulomb interactions in Hartree-Fock calculations of periodic systems
,”
Phys. Rev. B
28
,
5781
5792
(
1983
).
26.
R.
Dovesi
,
B.
Civalleri
,
C.
Roetti
,
V. R.
Saunders
, and
R.
Orlando
, “
Ab initio quantum simulation in solid state chemistry
,” in
Reviews in Computational Chemistry
(
John Wiley & Sons, Inc.
,
2005
), Vol. 21, pp.
1
125
.
27.
V. R.
Saunders
,
C.
Freyria-Fava
,
R.
Dovesi
,
L.
Salasco
, and
C.
Roetti
, “
On the electrostatic potential in crystalline systems where the charge density is expanded in Gaussian functions
,”
Mol. Phys.
77
,
629
665
(
1992
).
28.
V. R.
Saunders
,
C.
Freyria-Fava
,
R.
Dovesi
, and
C.
Roetti
, “
On the electrostatic potential in linear periodic polymers
,”
Comput. Phys. Commun.
84
,
156
172
(
1994
).
29.
M.
Causa
,
R.
Dovesi
,
R.
Orlando
,
C.
Pisani
, and
V. R.
Saunders
, “
Treatment of the exchange interactions in Hartree-Fock LCAO calculations of periodic systems
,”
J. Phys. Chem.
92
,
909
913
(
1988
).
30.
M.
Marsili
and
P.
Umari
, “
Method for the fast evaluation of Fock exchange for nonlocalized wave functions
,”
Phys. Rev. B
87
,
205110
(
2013
).
31.
X.
Wu
,
A.
Selloni
, and
R.
Car
, “
Order-N implementation of exact exchange in extended insulating systems
,”
Phys. Rev. B
79
,
085102
(
2009
).
32.
T. A.
Barnes
,
T.
Kurth
,
P.
Carrier
,
N.
Wichmann
,
D.
Prendergast
,
P. R. C.
Kent
, and
J.
Deslippe
, “
Improved treatment of exact exchange in Quantum ESPRESSO
,”
Comput. Phys. Commun.
214
,
52
58
(
2017
).
33.
L.
Lin
, “
Adaptively compressed exchange operator
,”
J. Chem. Theory Comput.
12
,
2242
2249
(
2016
).
34.
F.
Gygi
and
I.
Duchemin
, “
Efficient computation of Hartree-Fock exchange using recursive subspace bisection
,”
J. Chem. Theory Comput.
9
,
582
587
(
2012
).
35.
M.
Hutchinson
and
M.
Widom
, “
VASP on a GPU: Application to exact-exchange calculations of the stability of elemental boron
,”
Comput. Phys. Commun.
183
,
1422
1426
(
2012
).
36.
A. D.
Becke
, “
A multicenter numerical integration scheme for polyatomic molecules
,”
J. Chem. Phys.
88
,
2547
2553
(
1988
).
37.
W. C.
Mackrodt
,
N. M.
Harrison
,
V. R.
Saunders
,
N. L.
Allan
,
M. D.
Towler
,
E.
Aprà
, and
R.
Dovesi
, “
Ab initio Hartree-Fock calculations of CaO, VO, MnO and NiO
,”
Philos. Mag. A
68
,
653
666
(
1993
).
38.
N. M.
Harrison
,
V. R.
Saunders
,
R.
Dovesi
, and
W. C.
Mackrodt
, “
Transition metal materials: A first principles approach to the electronic structure of the insulating phase
,”
Philos. Trans. R. Soc., A
356
,
75
88
(
1998
).
39.
C.
Pisani
,
Quantum-Mechanical Ab-Initio Calculation of the Properties of Crystalline Materials
, Lecture Notes in Chemistry Series Vol. 67, edited by
C.
Pisani
(
Springer Berlin Heidelberg
,
Berlin
,
1996
).
40.
B.
Civalleri
,
P.
D’Arco
,
R.
Orlando
,
V. R.
Saunders
, and
R.
Dovesi
, “
Hartree-Fock geometry optimisation of periodic systems with the CRYSTAL code
,”
Chem. Phys. Lett.
348
,
131
138
(
2001
).
41.
K.
Doll
, “
Implementation of analytical Hartree-Fock gradients for periodic systems
,”
Comput. Phys. Commun.
137
,
74
88
(
2001
).
42.
K.
Doll
,
V. R.
Saunders
, and
N. M.
Harrison
, “
Analytical Hartree-Fock gradients for periodic systems
,”
Int. J. Quantum Chem.
82
,
1
13
(
2001
).
43.
K.
Doll
,
R.
Dovesi
, and
R.
Orlando
, “
Analytical Hartree-Fock gradients with respect to the cell parameter for systems periodic in three dimensions
,”
Theor. Chem. Acc.
112
,
394
402
(
2004
).
44.
K.
Doll
,
R.
Dovesi
, and
R.
Orlando
, “
Analytical Hartree-Fock gradients with respect to the cell parameter: Systems periodic in one and two dimensions
,”
Theor. Chem. Acc.
115
,
354
360
(
2006
).
45.
F.
Pascale
,
C. M.
Zicovich-Wilson
,
F. L.
Gejo
,
B.
Civalleri
,
R.
Orlando
, and
R.
Dovesi
, “
The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code
,”
J. Comput. Chem.
25
,
888
897
(
2004
).
46.
C. M.
Zicovich-Wilson
,
F.
Pascale
,
C.
Roetti
,
V. R.
Saunders
,
R.
Orlando
, and
R.
Dovesi
, “
Calculation of the vibration frequencies of α-quartz: The effect of Hamiltonian and basis set
,”
J. Comput. Chem.
25
,
1873
1881
(
2004
).
47.
F.
Pascale
,
C. M.
Zicovich-Wilson
,
R.
Orlando
,
C.
Roetti
,
P.
Ugliengo
, and
R.
Dovesi
, “
Vibration frequencies of Mg3Al2Si3O12 pyrope. An ab initio study with the CRYSTAL code
,”
J. Phys. Chem. B
109
,
6146
6152
(
2005
).
48.
W. F.
Perger
,
J.
Criswell
,
B.
Civalleri
, and
R.
Dovesi
, “
Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code
,”
Comput. Phys. Commun.
180
,
1753
1759
(
2009
).
49.
A.
Erba
,
A.
Mahmoud
,
R.
Orlando
, and
R.
Dovesi
, “
Elastic properties of six silicate garnet end members from accurate ab initio simulations
,”
Phys. Chem. Miner.
41
,
151
160
(
2013
).
50.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
51.
M.
Ferrero
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
The calculation of static polarizabilities of 1-3D periodic compounds. The implementation in the CRYSTAL code
,”
J. Comput. Chem.
29
,
1450
1459
(
2008
).
52.
M.
Ferrero
,
M.
Rérat
,
B.
Kirtman
, and
R.
Dovesi
, “
Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code
,”
J. Chem. Phys.
129
,
244110
(
2008
).
53.
R.
Dovesi
,
B.
Kirtman
,
L.
Maschio
,
J.
Maul
,
F.
Pascale
, and
M.
Rérat
, “
Calculation of the infrared intensity of crystalline systems. A comparison of three strategies based on Berry phase, Wannier function, and coupled-perturbed Kohn–Sham methods
,”
J. Phys. Chem. C
123
,
8336
8346
(
2018
).
54.
R. D.
King-Smith
and
D.
Vanderbilt
, “
Theory of polarization of crystalline solids
,”
Phys. Rev. B
47
,
1651
1654
(
1993
).
55.
R.
Resta
, “
Quantum-mechanical position operator in extended systems
,”
Phys. Rev. Lett.
80
,
1800
1803
(
1998
).
56.
S.
Dall’Olio
,
R.
Dovesi
, and
R.
Resta
, “
Spontaneous polarization as a Berry phase of the Hartree-Fock wavefunction: The case of KNbO3
,”
Phys. Rev. B
56
,
10105
10114
(
1997
).
57.
Y.
Noël
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
P.
D’Arco
, and
R.
Dovesi
, “
Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches
,”
Phys. Rev. B
65
,
014111
(
2002
).
58.
C. M.
Zicovich-Wilson
,
R.
Dovesi
, and
V. R.
Saunders
, “
A general method to obtain well-localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations
,”
J. Chem. Phys.
115
,
9708
9719
(
2001
).
59.
C. M.
Zicovich-Wilson
and
R.
Dovesi
,
Beyond Standard Quantum Chemistry: Applications from Gas to Condensed Phases
, edited by
R.
Hernandez-Lamoneda
(
Transworld Research Network
,
Trivandrum, Kerala, India
,
2007
), Vol. 125, pp.
140
169
.
60.
C. M.
Zicovich-Wilson
,
F. J.
Torres
,
F.
Pascale
,
L.
Valenzano
,
R.
Orlando
, and
R.
Dovesi
, “
Ab initio simulation of the IR spectra of pyrope, grossular, and andradite
,”
J. Comput. Chem.
29
,
2268
2278
(
2008
).
61.
G. J. B.
Hurst
,
M.
Dupuis
, and
E.
Clementi
, “
Ab initio analytic polarizability, first and second hyperpolarizabilities of large conjugated organic molecules: Applications to polyenes C4H6 to C22H24
,”
J. Chem. Phys.
89
,
385
395
(
1988
).
62.
E. I.
Blount
,
Solid State Physics: Advances in Research and Applications: Vol. 13
(
Academic Press
,
New York
,
1962
), p.
305
.
63.
P.
Otto
, “
Calculation of the polarizability and hyperpolarizabilities of periodic quasi-one-dimensional systems
,”
Phys. Rev. B
45
,
10876
10885
(
1992
).
64.
B.
Kirtman
,
F. L.
Gu
, and
D. M.
Bishop
, “
Extension of the Genkin and Mednis treatment for dynamic polarizabilities and hyperpolarizabilities of infinite periodic systems. I. Coupled perturbed Hartree-Fock theory
,”
J. Chem. Phys.
113
,
1294
1309
(
2000
).
65.
M.
Ferrero
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
Coupled perturbed Hartree-Fock for periodic systems: The role of symmetry and related computational aspects
,”
J. Chem. Phys.
128
,
014110
(
2008
).
66.
L.
Maschio
,
B.
Kirtman
,
R.
Orlando
, and
M.
Rèrat
, “
Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method
,”
J. Chem. Phys.
137
,
204113
(
2012
).
67.
L.
Maschio
,
B.
Kirtman
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
Comment on “Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method” [J. Chem. Phys. 137, 204113 (2012)]
,”
J. Chem. Phys.
139
,
167101
(
2013
).
68.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
69.
A.
Erba
,
M.
Ferrabone
,
J.
Baima
,
R.
Orlando
,
M.
Rérat
, and
R.
Dovesi
, “
The vibration properties of the (n,0) boron nitride nanotubes from ab initio quantum chemical simulations
,”
J. Chem. Phys.
138
,
054906
(
2013
).
70.
J.
Baima
,
A.
Erba
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
Beryllium oxide nanotubes and their connection to the flat monolayer
,”
J. Phys. Chem. C
117
,
12864
12872
(
2013
).
71.
E. J. W.
Whittaker
, “
The structure of chrysotile. IV. Para-chrysotile
,”
Acta Crystallogr.
9
,
865
867
(
1956
).
72.
K.
Yada
, “
Study of microstructure of chrysotile asbestos by high-resolution electron microscopy
,”
Acta Crystallogr., Sect. A: Found. Adv.
27
,
659
664
(
1971
).
73.
P.
D’Arco
,
Y.
Noel
,
R.
Demichelis
, and
R.
Dovesi
, “
Single-layered chrysotile nanotubes: A quantum mechanical ab initio simulation
,”
J. Chem. Phys.
131
,
204701
(
2009
).
74.
R.
Demichelis
,
M. D. L.
Pierre
,
M.
Mookherjee
,
C. M.
Zicovich-Wilson
, and
R.
Orlando
, “
Serpentine polymorphism: A quantitative insight from first-principles calculations
,”
CrystEngComm
18
,
4412
4419
(
2016
).
75.
A.
Grüneich
and
B. A.
Heß
, “
Choosing GTO basis sets for periodic HF calculations
,”
Theor. Chem. Acc.
100
,
253
263
(
1998
).
76.
F.
Jensen
, “
Analysis of energy-optimized Gaussian basis sets for condensed phase density functional calculations
,”
Theor. Chem. Acc.
132
,
1380
(
2013
).
77.
M. F.
Peintinger
,
D. V.
Oliveira
, and
T.
Bredow
, “
Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations
,”
J. Comput. Chem.
34
,
451
459
(
2013
).
78.
J.
Laun
,
D. V.
Oliveira
, and
T.
Bredow
, “
Consistent Gaussian basis sets of double- and triple-zeta valence with polarization quality of the fifth period for solid-state calculations
,”
J. Comput. Chem.
39
,
1285
1290
(
2018
).
79.
D. V.
Oliveira
,
J.
Laun
,
M. F.
Peintinger
, and
T.
Bredow
, “
BSSE-correction scheme for consistent Gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations
,”
J. Comput. Chem.
40
,
2364
2376
(
2019
).
80.
L.
Maschio
and
B.
Kirtman
, “
Coupled perturbation theory approach to dual basis sets for molecules and solids. I: General theory and application to molecules
,”
J. Chem. Theory Comput.
16
,
340
353
(
2020
).
81.
M.
Causà
,
R.
Dovesi
,
C.
Pisani
, and
C.
Roetti
, “
Electronic structure and stability of different crystal phases of magnesium oxide
,”
Phys. Rev. B
33
,
1308
1316
(
1986
).
82.
R.
Dovesi
,
C.
Pisani
,
C.
Roetti
, and
B.
Silvi
, “
The electronic structure of α-quartz: A periodic Hartree-Fock calculation
,”
J. Chem. Phys.
86
,
6967
6971
(
1987
).
83.
R.
Dovesi
,
M.
Causà
,
R.
Orlando
,
C.
Roetti
, and
V. R.
Saunders
, “
Ab initio approach to molecular crystals: A periodic Hartree-Fock study of crystalline urea
,”
J. Chem. Phys.
92
,
7402
7411
(
1990
).
84.
C.
Freyria-Fava
,
F.
Dovesi
,
V. R.
Saunders
,
M.
Leslie
, and
C.
Roetti
, “
Ca and Be substitution in bulk MgO: ‘ab initio’ Hartree-Fock and ionic model supercell calculations
,”
J. Phys.: Condens. Matter
5
,
4793
4804
(
1993
).
85.
M. D.
Towler
,
R.
Dovesi
, and
V. R.
Saunders
, “
Magnetic interactions and the cooperative Jahn-Teller effect in KCuF3
,”
Phys. Rev. B
52
,
10150
10159
(
1995
).
86.
R.
Dovesi
,
F. F.
Fava
,
C.
Roetti
, and
V. R.
Saunders
, “
Structural, electronic and magnetic properties of KMF3 (M=Mn, Fe, Co, Ni)
,”
Faraday Discuss.
106
,
173
187
(
1997
).
87.
G. T.
Surratt
,
R. N.
Euwema
, and
D. L.
Wilhite
, “
Hartree-Fock lattice constant and bulk modulus of diamond
,”
Phys. Rev. B
8
,
4019
4025
(
1973
).
88.
D. L.
Wilhite
and
R. N.
Euwema
, “
Charge-conserving integral approximations for ab initio quantum chemistry
,”
J. Chem. Phys.
61
,
375
382
(
1974
).
89.
R.
Colle
and
O.
Salvetti
, “
Approximate calculation of the correlation energy for the closed shells
,”
Theor. Chim. Acta
37
,
329
334
(
1975
).
90.
M.
Causà
,
R.
Dovesi
,
C.
Pisani
,
R.
Colle
, and
A.
Fortunelli
, “
Correlation correction to the Hartree-Fock total energy of solids
,”
Phys. Rev. B
36
,
891
897
(
1987
).
91.
M.
Causà
,
R.
Colle
,
R.
Dovesi
,
A.
Fortunelli
, and
C.
Pisani
, “
Correlation correction to the Hartree-Fock total energy of solids. II
,”
Phys. Scr.
38
,
194
198
(
1988
).
92.
M.
Causà
,
R.
Dovesi
,
C.
Pisani
,
R.
Colle
, and
A.
Fortunelli
, “
Erratum: Correlation correction to the Hartree-Fock total energy of solids
,”
Phys. Rev. B
37
,
8475
(
1988
).
93.
M.
Causà
and
A.
Zupan
, “
Density functional LCAO calculation of periodic systems. A posteriori correction of the Hartree-Fock energy of covalent and ionic crystals
,”
Chem. Phys. Lett.
220
,
145
153
(
1994
).
94.
A.
Zupan
and
M.
Causà
, “
Density functional LCAO calculations for solids: Comparison among Hartree-Fock, DFT local density approximation, and DFT generalized gradient approximation structural properties
,”
Int. J. Quantum Chem.
56
,
337
344
(
1995
).
95.
M. D.
Towler
,
A.
Zupan
, and
M.
Causà
, “
Density functional theory in periodic systems using local Gaussian basis sets
,”
Comput. Phys. Commun.
98
,
181
205
(
1996
).
96.
A.
Zupan
,
J. P.
Perdew
,
K.
Burke
, and
M.
Causà
, “
Density-gradient analysis for density functional theory: Application to atoms
,”
Int. J. Quantum Chem.
61
,
835
845
(
1997
).
97.
B.
Civalleri
,
D.
Presti
,
R.
Dovesi
, and
A.
Savin
, “
On choosing the best density functional approximation
,” in
Chemical Modelling: Applications and Theory: Volume 9
(
Royal Society of Chemistry
,
2012
), pp.
168
185
.
98.
P.
Pernot
,
B.
Civalleri
,
D.
Presti
, and
A.
Savin
, “
Prediction uncertainty of density functional approximations for properties of crystals with cubic symmetry
,”
J. Phys. Chem. A
119
,
5288
5304
(
2015
).
99.
B.
Civalleri
,
R.
Dovesi
,
P.
Pernot
,
D.
Presti
, and
A.
Savin
, “
On the use of benchmarks for multiple properties
,”
Computation
4
,
20
(
2016
).
100.
M.
Catti
,
G.
Valerio
, and
R.
Dovesi
, “
Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3(hematite)
,”
Phys. Rev. B
51
,
7441
7450
(
1995
).
101.
J. M.
Ricart
,
R.
Dovesi
,
C.
Roetti
, and
V. R.
Saunders
, “
Electronic and magnetic structure of KNiF3 perovskite
,”
Phys. Rev. B
52
,
2381
2389
(
1995
).
102.
R.
Dovesi
,
J. M.
Ricart
,
V. R.
Saunders
, and
R.
Orlando
, “
Superexchange interaction in K2NiF4: An ab initio Hartree-Fock study
,”
J. Phys.: Condens. Matter
7
,
7997
8007
(
1995
).
103.
G.
Valerio
,
M.
Catti
,
R.
Dovesi
, and
R.
Orlando
, “
Ab initio study of antiferromagnetic rutile-type FeF2
,”
Phys. Rev. B
52
,
2422
2427
(
1995
).
104.
M.
Catti
,
G.
Sandrone
,
G.
Valerio
, and
R.
Dovesi
, “
Electronic, magnetic and crystal structure of Cr2O3 by theoretical methods
,”
J. Phys. Chem. Solids
57
,
1735
1741
(
1996
).
105.
F. F.
Fava
,
P.
D’Arco
,
R.
Orlando
, and
R.
Dovesi
, “
A quantum mechanical investigation of the electronic and magnetic properties of CaMnO3 perovskite
,”
J. Phys.: Condens. Matter
9
,
489
498
(
1997
).
106.
M.
Catti
,
G.
Sandrone
, and
R.
Dovesi
, “
Periodic unrestricted Hartree-Fock study of corundum-like Ti2O3 and V2O3
,”
Phys. Rev. B
55
,
16122
16131
(
1997
).
107.
F. F.
Fava
,
I.
Baraille
,
A.
Lichanot
,
C.
Larrieu
, and
R.
Dovesi
, “
On the structural, electronic and magnetic properties of MnCr2O4 spinel
,”
J. Phys.: Condens. Matter
9
,
10715
10724
(
1997
).
108.
Z. H.
Levine
and
D. C.
Allan
, “
Linear optical response in silicon and germanium including self-energy effects
,”
Phys. Rev. Lett.
63
,
1719
1722
(
1989
).
109.
X.
Gonze
and
C.
Lee
, “
Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory
,”
Phys. Rev. B
55
,
10355
10368
(
1997
).
110.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
, “
Band theory and Mott insulators: Hubbard U instead of Stoner I
,”
Phys. Rev. B
44
,
943
954
(
1991
).
111.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
, “
Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
,”
Phys. Rev. B
57
,
1505
1509
(
1998
).
112.
M.
Cococcioni
and
S.
de Gironcoli
, “
Linear response approach to the calculation of the effective interaction parameters in the LDA+U method
,”
Phys. Rev. B
71
,
035105
(
2005
).
113.
K.
Yamaguchi
,
H.
Fukui
, and
T.
Fueno
, “
Molecular orbital (MO) theory for magnetically interacting organic compounds. Ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers
,”
Chem. Lett.
15
,
625
(
1986
).
114.
L. J.
De Jongh
and
R.
Block
, “
On the exchange interactions in some 3d-metal ionic compounds: I. The 180° superexchange in the 3d-metal fluorides XMF3 and X2MF4 (X = K, Rb, Tl; M = Mn, Co, Ni)
,”
Physica B+C
79
,
568
593
(
1975
).
115.
S. R.
Chinn
,
H. J.
Zeiger
, and
J. R.
O’Connor
, “
Two-magnon Raman scattering and exchange interactions in antiferromagnetic KNiF3 and K2NiF4 and ferrimagnetic RbNiF3
,”
Phys. Rev. B
3
,
1709
(
1971
).
116.
A.
Rimola
,
C. M.
Zicovich-Wilson
,
R.
Dovesi
, and
P.
Ugliengo
, “
Search and characterization of transition state structures in crystalline systems using valence coordinates
,”
J. Chem. Theory Comput.
6
,
1341
1350
(
2010
).
117.
K.
Doll
, “
Analytical stress tensor and pressure calculations with the CRYSTAL code
,”
Mol. Phys.
108
,
223
227
(
2010
).
118.
A.
Erba
and
R.
Dovesi
, “
Photoelasticity of crystals from theoretical simulations
,”
Phys. Rev. B
88
,
045121
(
2013
).
119.
R.
Orlando
,
V.
Lacivita
,
R.
Bast
, and
K.
Ruud
, “
Calculation of the first static hyperpolarizability tensor of three-dimensional periodic compounds with a local basis set: A comparison of LDA, PBE, PBE0, B3LYP, and HF results
,”
J. Chem. Phys.
132
,
244106
(
2010
).
120.
A.
Erba
,
K. E.
El-Kelany
,
M.
Ferrero
,
I.
Baraille
, and
M.
Rérat
, “
Piezoelectricity of SrTiO3: An ab initio description
,”
Phys. Rev. B
88
,
035102
(
2013
).
121.
R.
Orlando
,
M.
Ferrero
,
M.
Rérat
,
B.
Kirtman
, and
R.
Dovesi
, “
Calculation of the static electronic second hyperpolarizability or χ(3) tensor of three-dimensional periodic compounds with a local basis set
,”
J. Chem. Phys.
131
,
184105
(
2009
).
122.
M.
Ferrero
,
M.
Rérat
,
R.
Orlando
,
R.
Dovesi
, and
I. J.
Bush
, “
Coupled perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds
,”
J. Phys.: Conf. Ser.
117
,
012016
(
2008
).
123.
A.
Erba
,
M.
Ferrabone
,
R.
Orlando
, and
R.
Dovesi
, “
Accurate dynamical structure factors from ab initio lattice dynamics: The case of crystalline silicon
,”
J. Comput. Chem.
34
,
346
354
(
2013
).
124.
C.
Carteret
,
M. D. L.
Pierre
,
M.
Dossot
,
F.
Pascale
,
A.
Erba
, and
R.
Dovesi
, “
The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation
,”
J. Chem. Phys.
138
,
014201
(
2013
).
125.
M. D. L.
Pierre
,
R.
Orlando
,
L.
Maschio
,
K.
Doll
,
P.
Ugliengo
, and
R.
Dovesi
, “
Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4
,”
J. Comput. Chem.
32
,
1775
1784
(
2011
).
126.
A. M.
Ferrari
,
L.
Valenzano
,
A.
Meyer
,
R.
Orlando
, and
R.
Dovesi
, “
Quantum-Mechanical ab initio simulation of the Raman and IR spectra of Fe3Al2Si3O12 almandine
,”
J. Phys. Chem. A
113
,
11289
11294
(
2009
).
127.
A. Ø.
Madsen
,
B.
Civalleri
,
M.
Ferrabone
,
F.
Pascale
, and
A.
Erba
, “
Anisotropic displacement parameters for molecular crystals from periodic Hartree-Fock and density functional theory calculations
,”
Acta Crystallogr., Sect. A: Found. Adv.
69
,
309
321
(
2013
).
128.
J.
Baima
,
M.
Ferrabone
,
R.
Orlando
,
A.
Erba
, and
R.
Dovesi
, “
Thermodynamics and phonon dispersion of pyrope and grossular silicate garnets from ab initio simulations
,”
Phys. Chem. Miner.
43
,
137
149
(
2016
).
129.
A.
Erba
,
M.
Shahrokhi
,
R.
Moradian
, and
R.
Dovesi
, “
On how differently the quasi-harmonic approximation works for two isostructural crystals: Thermal properties of periclase and lime
,”
J. Chem. Phys.
142
,
044114
(
2015
).
130.
F.
Pascale
,
S.
Salustro
,
A. M.
Ferrari
,
M.
Rérat
,
P.
D’Arco
, and
R.
Dovesi
, “
The infrared spectrum of very large (periodic) systems: Global versus fragment strategies—the case of three defects in diamond
,”
Theor. Chem. Acc.
137
,
170
(
2018
).
131.
F. S.
Gentile
,
S.
Salustro
,
M.
Causà
,
A.
Erba
,
P.
Carbonniére
, and
R.
Dovesi
, “
The VN3H defect in diamond: A quantum-mechanical characterization
,”
Phys. Chem. Chem. Phys.
19
,
22221
22229
(
2017
).
132.
F. S.
Gentile
,
S.
Salustro
,
J. K.
Desmarais
,
A. M.
Ferrari
,
P.
D’Arco
, and
R.
Dovesi
, “
Vibrational spectroscopy of hydrogens in diamond: A quantum mechanical treatment
,”
Phys. Chem. Chem. Phys.
20
,
11930
11940
(
2018
).
133.
S.
Salustro
,
F.
Pascale
,
W. C.
Mackrodt
,
C.
Ravoux
,
A.
Erba
, and
R.
Dovesi
, “
Interstitial nitrogen atoms in diamond. A quantum mechanical investigation of its electronic and vibrational properties
,”
Phys. Chem. Chem. Phys.
20
,
16615
16624
(
2018
).
134.
K.
Kunc
and
R.
Resta
, “
External fields in the self-consistent theory of electronic states: A new method for direct evaluation of macroscopic and microscopic dielectric response
,”
Phys. Rev. Lett.
51
,
686
689
(
1983
).
135.
R.
Resta
and
K.
Kunc
, “
Self-consistent theory of electronic states and dielectric response in semiconductors
,”
Phys. Rev. B
34
,
7146
7157
(
1986
).
136.
C.
Darrigan
,
M.
Rérat
,
G.
Mallia
, and
R.
Dovesi
, “
Implementation of the finite field perturbation method in the CRYSTAL program for calculating the dielectric constant of periodic systems
,”
J. Comput. Chem.
24
,
1305
1312
(
2003
).
137.
B.
Champagne
,
J. G.
Fripiat
, and
J. M.
André
, “
From uncoupled to coupled Hartree-Fock polarizabilities of infinite polymeric chains. Pariser-Parr-Pople applications to the polyacetylene chains
,”
J. Chem. Phys.
96
,
8330
8337
(
1992
).
138.
P.
Otto
,
F. L.
Gu
, and
J.
Ladik
, “
Calculation of ab initio dynamic hyperpolarizabilities of polymers
,”
J. Chem. Phys.
110
,
2717
2726
(
1999
).
139.
L.
Maschio
,
B.
Kirtman
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory
,”
J. Chem. Phys.
139
,
164101
(
2013
).
140.
L.
Maschio
,
B.
Kirtman
,
M.
Rérat
,
R.
Orlando
, and
R.
Dovesi
, “
Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments
,”
J. Chem. Phys.
139
,
164102
(
2013
).
141.
J.
Baima
,
A.
Erba
,
L.
Maschio
,
C. M.
Zicovich-Wilson
,
R.
Dovesi
, and
B.
Kirtman
, “
Direct piezoelectric tensor of 3D periodic systems through a coupled perturbed Hartree–Fock/Kohn–Sham method
,”
Z. Phys. Chem.
230
,
719
736
(
2016
).
142.
R.
Dovesi
,
V. R.
Saunders
,
C.
Roetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
K.
Doll
,
N. M.
Harrison
,
B.
Civalleri
,
I. J.
Bush
,
Ph.
D’Arco
,
M.
Llunell
,
M.
Causà
, and
Y.
Noël
, CRYSTAL14 User’s Manual,
Università di Torino
,
Torino
,
2014
, http://www.crystal.unito.it.
143.
L.
Bernasconi
,
S.
Tomić
,
M.
Ferrero
,
M.
Rérat
,
R.
Orlando
,
R.
Dovesi
, and
N. M.
Harrison
, “
First-principles optical response of semiconductors and oxide materials
,”
Phys. Rev. B
83
,
195325
(
2011
).
144.
A. M.
Ferrari
,
R.
Orlando
, and
M.
Rérat
, “
Ab initio calculation of the ultraviolet–visible (UV-vis) absorption spectrum, electron-loss function, and reflectivity of solids
,”
J. Chem. Theory Comput.
11
,
3245
3258
(
2015
).
145.
M.
Rérat
,
M.
Ferrero
,
E.
Amzallag
,
I.
Baraille
, and
R.
Dovesi
, “
Comparison of the polarizability of periodic systems computed by using the length and velocity operators
,”
J. Phys.: Conf. Ser.
117
,
012023
(
2008
).
146.
B. J.
Orr
and
J. F.
Ward
, “
Perturbation theory of the non-linear optical polarization of an isolated system
,”
Mol. Phys.
20
,
513
526
(
1971
).
147.
D. M.
Bishop
and
B.
Kirtman
, “
A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities
,”
J. Chem. Phys.
95
,
2646
2658
(
1991
).
148.
J. E.
Rice
,
R. D.
Amos
,
S. M.
Colwell
,
N. C.
Handy
, and
J.
Sanz
, “
Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride
,”
J. Chem. Phys.
93
,
8828
8839
(
1990
).
149.
S. P.
Karna
and
M.
Dupuis
, “
Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program
,”
J. Comput. Chem.
12
,
487
504
(
1991
).
150.
L.
Maschio
,
M.
Rérat
,
B.
Kirtman
, and
R.
Dovesi
, “
Calculation of the dynamic first electronic hyperpolarizability β(−ωσ; ω1, ω2) of periodic systems. Theory, validation, and application to multi-layer MoS2
,”
J. Chem. Phys.
143
,
244102
(
2015
).
151.
M.
Rérat
,
L.
Maschio
,
B.
Kirtman
,
B.
Civalleri
, and
R.
Dovesi
, “
Computation of second harmonic generation for crystalline urea and KDP. An ab initio approach through the coupled perturbed Hartree-Fock/Kohn-Sham scheme
,”
J. Chem. Theory Comput.
12
,
107
113
(
2015
).
152.
Y.
Noel
,
P.
D’Arco
,
R.
Demichelis
,
C. M.
Zicovich-Wilson
, and
R.
Dovesi
, “
On the use of symmetry in the ab initio quantum mechanical simulation of nanotubes and related materials
,”
J. Comput. Chem.
31
,
855
862
(
2010
).
153.
R.
Demichelis
,
Y.
Noël
,
P.
D’Arco
,
L.
Maschio
,
R.
Orlando
, and
R.
Dovesi
, “
Structure and energetics of imogolite: A quantum mechanical ab initio study with B3LYP hybrid functional
,”
J. Mater. Chem.
20
,
10417
10425
(
2010
).
154.
A. M.
Ferrari
,
B.
Civalleri
, and
R.
Dovesi
, “
Ab initio periodic study of the conformational behavior of glycine helical homopeptides
,”
J. Comput. Chem.
31
,
1777
1784
(
2010
).
155.
S.
Mustapha
,
P.
D’Arco
,
M. D. L.
Pierre
,
Y.
Noël
,
M.
Ferrabone
, and
R.
Dovesi
, “
On the use of symmetry in configurational analysis for the simulation of disordered solids
,”
J. Phys.: Condens. Matter
25
,
105401
(
2013
).
156.
V.
Lacivita
,
A.
Mahmoud
,
A.
Erba
,
P.
D’Arco
, and
S.
Mustapha
, “
Hydrogrossular, Ca3Al2(SiO4)3−x(H4O4)x: An ab initio investigation of its structural and energetic properties
,”
Am. Mineral.
100
,
2637
2649
(
2015
).
157.
Y.
Noël
,
M. D. L.
Pierre
,
C. M.
Zicovich-Wilson
,
R.
Orlando
, and
R.
Dovesi
, “
Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000. Insights from an ab initio hybrid DFT study
,”
Phys. Chem. Chem. Phys.
16
,
13390
13401
(
2014
).
158.
R.
Orlando
,
M. D.
Piane
,
I. J.
Bush
,
P.
Ugliengo
,
M.
Ferrabone
, and
R.
Dovesi
, “
A new massively parallel version of CRYSTAL for large systems on high performance computing architectures
,”
J. Comput. Chem.
33
,
2276
2284
(
2012
).
159.
M. D.
Piane
,
M.
Corno
,
R.
Orlando
,
R.
Dovesi
, and
P.
Ugliengo
, “
Elucidating the fundamental forces in protein crystal formation: The case of crambin
,”
Chem. Sci.
7
,
1496
1507
(
2016
).
160.
M.
D’Amore
,
B.
Civalleri
,
I. J.
Bush
,
E.
Albanese
, and
M.
Ferrabone
, “
Elucidating the interaction of CO2 in the giant metal-organic framework MIL-100 through large-scale periodic ab initio modeling
,”
J. Phys. Chem. C
123
,
28677
28687
(
2019
).
161.
S.
Salustro
,
A. M.
Ferrari
,
R.
Orlando
, and
R.
Dovesi
, “
Comparison between cluster and supercell approaches: The case of defects in diamond
,”
Theor. Chem. Acc.
136
,
42
(
2017
).
162.
S.
Salustro
,
G.
Sansone
,
C. M.
Zicovich-Wilson
,
Y.
Noël
,
L.
Maschio
, and
R.
Dovesi
, “
The A-center defect in diamond: Quantum mechanical characterization through the infrared spectrum
,”
Phys. Chem. Chem. Phys.
19
,
14478
14485
(
2017
).
163.
S.
Salustro
,
A. M.
Ferrari
,
F. S.
Gentile
,
J. K.
Desmarais
,
M.
Rérat
, and
R.
Dovesi
, “
Characterization of the B-center defect in diamond through the vibrational spectrum: A quantum-mechanical approach
,”
J. Phys. Chem. A
122
,
594
600
(
2018
).
164.
A.
Erba
,
J.
Baima
,
I.
Bush
,
R.
Orlando
, and
R.
Dovesi
, “
Large-scale condensed matter DFT simulations: Performance and capabilities of the CRYSTAL code
,”
J. Chem. Theory Comput.
13
,
5019
5027
(
2017
).
165.
S.
Casassa
,
A.
Erba
,
J.
Baima
, and
R.
Orlando
, “
Electron density analysis of large (molecular and periodic) systems: A parallel implementation
,”
J. Comput. Chem.
36
,
1940
1946
(
2015
).
166.
J. P.
Bade
,
S. R.
Sahaida
,
B. R.
Stoner
,
J. A.
von Windheim
,
J. T.
Glass
,
K.
Miyata
,
K.
Nishimura
, and
K.
Kobashi
, “
Fabrication of diamond thin-film thermistors for high-temperature applications
,”
Diamond Relat. Mater.
2
,
816
819
(
1993
).
167.
P.
Bergonzo
,
D.
Tromson
, and
C.
Mer
, “
CVD diamond-based semi-transparent beam-position monitors for synchrotron beamlines: Preliminary studies and device developments at CEA/Saclay
,”
J. Synchrotron Radiat.
13
,
151
158
(
2006
).
168.
G.
Davies
, “
The A nitrogen aggregate in diamond-its symmetry and possible structure
,”
J. Phys. C: Solid State Phys.
9
,
L537
L542
(
1976
).
169.
G.
Davies
,
B.
Campbell
,
A.
Mainwood
,
M.
Newton
,
M.
Watkins
,
H.
Kanda
, and
T. R.
Anthony
, “
Interstitials, vacancies and impurities in diamond
,”
Phys. Status Solidi A
186
,
187
198
(
2001
).
170.
S. J.
Breuer
and
P. R.
Briddon
, “
Ab initio investigation of the native defects in diamond and self-diffusion
,”
Phys. Rev. B
51
,
6984
6994
(
1995
).
171.
R.
Kalish
,
A.
Reznik
,
S.
Prawer
,
D.
Saada
, and
J.
Adler
, “
Ion-implantation-induced defects in diamond and their annealing: Experiment and simulation
,”
Phys. Status Solidi A
174
,
83
99
(
1999
).
172.
T.
Evans
,
Z.
Qi
, and
J.
Maguire
, “
The stages of nitrogen aggregation in diamond
,”
J. Phys. C: Solid State Phys.
14
,
L379
L384
(
1981
).
173.
D. A.
Zedgenizov
,
A. A.
Kalinin
,
V. V.
Kalinina
,
Y. N.
Pal’yanov
, and
V. S.
Shatsky
, “
The transformation features of impurity defects in natural diamonds of various habits under high P–T conditions
,” in
Doklady Earth Sciences
(
Springer; Pleiades Publishing Ltd.
,
2016
), Vol. 466, pp.
32
37
.
174.
F. S.
Gentile
,
S.
Salustro
,
G. D.
Palma
,
M.
Causà
,
P.
D’Arco
, and
R.
Dovesi
, “
Hydrogen, boron and nitrogen atoms in diamond: A quantum mechanical vibrational analysis
,”
Theor. Chem. Acc.
137
,
154
(
2018
).
175.
A. M.
Ferrari
,
S.
Salustro
,
F. S.
Gentile
,
W. C.
Mackrodt
, and
R.
Dovesi
, “
Substitutional nitrogen in diamond: A quantum mechanical investigation of the electronic and spectroscopic properties
,”
Carbon
134
,
354
365
(
2018
).
176.
H.
Kjær
and
S.
Sauer
, “
Pople style basis sets for the calculation of NMR spin–spin coupling constants: The 6-31G-J and 6-311G-J basis sets
,”
J. Chem. Theory Comput.
7
,
4070
4076
(
2011
).
177.
C.
Gatti
and
S.
Casassa
, TOPOND14 User’s Manual, CNR-ISTM of Milano, Milano, 2017, http://www.crystal.unito.it/topond/topond.php.
178.
C. M.
Zicovich-Wilson
,
M.
,
A. M.
Navarrete-López
, and
S.
Casassa
, “
Hirshfeld-I charges in linear combination of atomic orbitals periodic calculations
,”
Theor. Chem. Acc.
135
,
188
(
2016
).
179.
G. D.
Palma
,
B.
Kirtman
,
F. S.
Gentile
,
A.
Platonenko
,
A. M.
Ferrari
, and
R.
Dovesi
, “
The VN2 negatively charged defect in diamond. A quantum mechanical investigation of the EPR response
,”
Carbon
159
,
443
450
(
2020
).
180.
B. L.
Green
,
M. W.
Dale
,
M. E.
Newton
, and
D.
Fisher
, “
Electron paramagnetic resonance of the N2V defect in 15N-doped synthetic diamond
,”
Phys. Rev. B
92
,
165204
(
2015
).
181.
R. J.
Cook
and
D. H.
Whiffen
, “
Electron nuclear double resonance study of a nitrogen centre in diamond
,”
Proc. R. Soc. London, Ser. A
295
,
99
106
(
1966
).
182.
A.
Cox
,
M. E.
Newton
, and
J. M.
Baker
, “
13C, 14N and 15N ENDOR measurements on the single substitutional nitrogen centre (P1) in diamond
,”
J. Phys.: Condens. Matter
6
,
551
563
(
1994
).
183.
R. C.
Barklie
and
J.
Guven
, “
13C hyperfine structure and relaxation times of the P1 centre in diamond
,”
J. Phys. C: Solid State Phys.
14
,
3621
3631
(
1981
).
184.
J. A.
van Wyk
and
J. H. N.
Loubser
, “
Electron spin resonance of a di-nitrogen centre in Cape yellow type Ia diamonds
,”
J. Phys. C: Solid State Phys.
16
,
1501
1506
(
1983
).
185.
G. D.
Palma
,
F. S.
Gentile
,
V.
Lacivita
,
W.
Mackrodt
,
M.
Causà
, and
R.
Dovesi
, “
N2 positively charged defects in diamond. A quantum mechanical investigation of the structural, electronic, EPR and vibrational properties
,”
J. Mater. Chem. C
8
,
5239
5247
(
2020
).
186.
W. V.
Smith
,
P. P.
Sorokin
,
I. L.
Gelles
, and
G. J.
Lasher
, “
Electron-spin resonance of nitrogen donors in diamond
,”
Phys. Rev.
115
,
1546
1552
(
1959
).
187.
J. H. N.
Loubser
and
L. D.
Preez
, “
New lines in the electron spin resonance spectrum of substitutional nitrogen donors in diamond
,”
Br. J. Appl. Phys.
16
,
457
462
(
1965
).
188.
A.
Lichanot
,
C.
Larrieu
,
R.
Orlando
, and
R.
Dovesi
, “
Lithium trapped-hole centre in magnesium oxide. An ab initio supercell study
,”
J. Phys. Chem. Solids
59
,
7
12
(
1998
).
189.
S.
Casassa
and
A. M.
Ferrari
, “
Calibration of 57Fe Mössbauer constants by first principles
,”
Phys. Chem. Chem. Phys.
18
,
10201
10206
(
2016
).
190.
W. C.
Holton
,
H.
Blum
, and
C. P.
Slichter
, “
Hyperfine structure of the F center in LiF
,”
Phys. Rev. Lett.
5
,
197
200
(
1960
).
191.
G.
Mallia
,
R.
Orlando
,
C.
Roetti
,
P.
Ugliengo
, and
R.
Dovesi
, “
F center in LiF: A quantum mechanical ab initio investigation of the hyperfine interaction between the unpaired electron at the vacancy and its first seven neighbors
,”
Phys. Rev. B
63
,
235102
(
2001
).
192.
M. T.
Ruggiero
,
J.
Sibik
,
R.
Orlando
,
J. A.
Zeitler
, and
T. M.
Korter
, “
Measuring the elasticity of poly-l-proline helices with terahertz spectroscopy
,”
Angew. Chem., Int. Ed.
55
,
6877
6881
(
2016
).
193.
B. G.
Searle
, “
DL visualize
,”
Comput. Phys. Commun.
137
,
25
32
(
2001
).
194.
A.
Kokalj
, “
Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale
,”
Comput. Mater. Sci.
28
,
155
168
(
2003
).
195.
P.
Ugliengo
,
D.
Viterbo
, and
G.
Chiari
, “
MOLDRAW: Molecular graphics on a personal computer
,”
Z. Kristallogr. - Cryst. Mater.
207
,
9
23
(
1993
).
196.
P.
Canepa
,
R. M.
Hanson
,
P.
Ugliengo
, and
M.
Alfredsson
, “
J-ICE: A new jmol interface for handling and visualizing crystallographic and electronic properties
,”
J. Appl. Crystallogr.
44
,
225
229
(
2010
).
197.
G.
Beata
,
G.
Perego
, and
B.
Civalleri
, “
CRYSPLOT: A new tool to visualize physical and chemical properties of molecules, polymers, surfaces, and crystalline solids
,”
J. Comput. Chem.
40
,
2329
2338
(
2019
).
You do not currently have access to this content.