Single molecule tracking experiments inside a hydrated polymer network have shown that the tracer motion is subdiffusive due to the viscoelastic environment inside the gel-like network. This property can be related to the negative autocorrelation of the instantaneous displacements at short times. Although the displacements of the individual tracers exhibit Gaussian statistics, the displacement distribution of all the trajectories combined from different spatial locations of the polymer network exhibits a non-Gaussian distribution. Here, we analyze many individual tracer trajectories to show that the central portion of the non-Gaussian distribution can be well approximated by an exponential distribution that spreads sublinearly with time. We explain all these features seen in the experiment by a generalized Langevin model for an overdamped particle with algebraically decaying correlations. We show that the degree of non-Gaussianity can change with the extent of heterogeneity, which is controlled in our model by the experimentally observed distributions of the motion parameters.

1.
N. G.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North Holland
,
2007
).
2.
H.
Risken
,
The Fokker-Planck Equation: Methods of Solutions and Applications
(
Springer
,
1996
).
3.
N.
Wax
,
Selected Papers on Noise and Stochastic Processes
(
Dover
,
New York
,
1954
).
4.
F.
Ritort
,
J. Phys.: Condens. Matter
18
,
R531
(
2006
).
5.
D.
Ernst
,
J.
Köhler
, and
M.
Weiss
,
Phys. Chem. Chem. Phys.
16
,
7686
(
2014
).
6.
F. C.
Hendriks
,
F.
Meirer
,
A. V.
Kubarev
,
Z.
Ristanović
,
M. B. J.
Roeffaers
,
E. T. C.
Vogt
,
P. C.
Bruijnincx
, and
B. M.
Weckhuysen
,
J. Am. Chem. Soc.
139
,
13632
(
2017
).
7.
J.
Elf
and
I.
Barkefors
,
Annu. Rev. Biochem.
88
,
635
(
2019
).
8.
K.
Truex
,
H. S.
Chung
,
J. M.
Louis
, and
W. A.
Eaton
,
Phys. Rev. Lett.
115
,
018101
(
2015
).
9.
F.
Höfling
and
T.
Franosch
,
Rep. Prog. Theor. Phys.
76
,
046602
(
2017
).
10.
R.
Metzler
,
J.-H.
Jeon
, and
A. G.
Cherstvy
,
Biochim. Biophys. Acta
1858
,
2451
(
2016
).
11.
B.
Alberts
,
A.
Johnson
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
P.
Walter
,
Molecular Biology of the Cell
, 5th ed. (
Garland Science
,
Garland, New York
,
2008
).
12.
I.
Golding
and
E. C.
Cox
,
Phys. Rev. Lett.
96
,
098102
(
2006
).
13.
S. C.
Weber
,
A. J.
Spakowitz
, and
J. A.
Theriot
,
Phys. Rev. Lett.
104
,
238102
(
2010
).
14.
G.
Seisenberger
,
M. U.
Ried
,
T. E. H.
Buning
,
M.
Hallek
, and
C.
Brauchle
,
Science
294
,
1929
(
2001
).
15.
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapf
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
6438
(
2011
).
16.
D.
Arcizet
,
B.
Meier
,
E.
Sackmann
,
J. O.
Rädler
, and
D.
Heinrich
,
Phys. Rev. Lett.
101
,
248103
(
2008
).
17.
P.
Bursac
,
G.
Lenormand
,
B.
Fabry
,
M.
Oliver
,
D. A.
Weitz
,
V.
Viasnoff
,
J. P.
Butler
, and
J. J.
Fredberg
,
Nat. Mater.
4
,
557
(
2005
).
18.
B. P.
Parry
,
I. V.
Surovtsev
,
M. T.
Cabeen
,
C. S.
O’Hern
,
E. R.
Dufresne
, and
C. J.
Wagner
,
Cell
156
,
183
(
2014
).
19.
C. P.
Brangwynne
,
G. H.
Koenderink
,
F. C.
MacKintosh
, and
D. A.
Weitz
,
Trends Cell Biol.
19
,
423
(
2009
).
20.
I. M.
Sokolov
,
Chaos
15
,
026103
(
2005
).
21.
M.
Otten
,
A.
Nandi
,
D.
Arcizet
,
M.
Gorelashvili
,
B.
Lindner
, and
D.
Heinrich
,
Biophys. J.
102
,
758
(
2012
).
22.
C. P.
Brangwynne
,
G. H.
Koenderink
,
F. C.
MacKintosh
, and
D. A.
Weitz
,
J. Cell Biol.
183
,
583
(
2008
).
23.
J.-H.
Jeon
,
N.
Leijnse
,
L. B.
Odderschede
, and
R.
Metzler
,
New J. Phys.
15
,
045011
(
2013
).
24.
D. S.
Banks
and
C.
Fradin
,
Biophys. J.
89
,
2960
(
2005
).
25.
A.
Kusumi
,
C.
Nakada
,
K.
Ritchie
,
K.
Murase
,
K.
Suzuki
,
H.
Murakoshi
,
R. S.
Kasai
,
J.
Kondo
, and
T.
Fujiwara
,
Annu. Rev. Biophys. Biomol. Struct.
34
,
351
(
2005
).
26.
I.
Bronshtein
,
Y.
Israel
,
E.
Kepten
,
S.
Mai
,
Y.
Shav-Tal
,
E.
Barkai
, and
Y.
Garini
,
Phys. Rev. Lett.
103
,
018102
(
2009
).
27.
B. M.
Regner
,
D.
Vučinić
,
C.
Domnisoru
,
T. M.
Bartol
,
M. W.
Hetzer
,
D. M.
Tartakovsky
, and
T. J.
Sejnowski
,
Biophys. J.
104
,
1652
(
2013
).
29.
K.
Luby-Phelps
,
Int. Rev. Cytol.
192
,
189
(
1999
).
30.
M.
Weiss
,
M.
Elsner
,
F.
Kartberg
, and
T.
Nilsson
,
Biophys. J.
87
,
3518
(
2004
).
31.
J.
Szymanski
and
M.
Weiss
,
Phys. Rev. Lett.
103
,
038102
(
2009
).
32.
J. A.
Dix
and
A. S.
Verkman
,
Annu. Rev. Biophys.
37
,
247
(
2008
).
33.
H.
Scher
and
E. W.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
).
34.
B. D.
Hughes
,
Random Walks and Random Environments
(
Oxford University
,
Oxford
,
1995
), Vol. 1.
37.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
).
38.
N.
Özkaya
and
M.
Nordin
,
Fundamentals of Biomechanics
(
Springer
,
New York
,
1999
), pp.
195
218
.
39.
G.
Guigas
,
C.
Kalla
, and
M.
Weiss
,
Biophys. J.
93
,
316
(
2007
).
40.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
41.
I.
Goychuk
,
Phys. Rev. E
80
,
046125
(
2009
).
42.
I.
Goychuk
,
Adv. Chem. Phys.
150
,
187
(
2012
).
43.
P. C.
Bressloff
and
J. M.
Newby
,
Rev. Mod. Phys.
85
,
135
(
2013
).
44.
B.
Wang
,
J.
Kuo
,
S. C.
Bae
, and
S.
Granick
,
Nat. Mater.
11
,
481
(
2012
).
45.
G.
Kwon
,
B. J.
Sung
, and
A.
Yethiraj
,
J. Phys. Chem. B
118
,
8128
(
2014
).
46.
M. V.
Chubynsky
and
G. W.
Slater
,
Phys. Rev. Lett.
113
,
098302
(
2014
).
48.
E. R.
Weeks
,
J. C.
Crocker
,
A. C.
Levitt
,
A.
Schofield
, and
D. A.
Weitz
,
Science
287
,
627
(
2000
);
[PubMed]
W. K.
Kegel
and
A.
van Blaaderen
,
Science
287
,
290
(
2000
);
[PubMed]
K. C.
Leptos
,
J. S.
Guasto
,
J. P.
Gollub
,
A. I.
Pesci
, and
R. E.
Goldstein
,
Phys. Rev. Lett.
103
,
198103
(
2009
).
[PubMed]
49.
B.
Wang
,
S. M.
Anthony
,
S. C.
Bae
, and
S.
Granick
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
15160
(
2009
).
50.
S.
Stylianidou
,
N. J.
Kuwada
, and
P. A.
Wiggins
,
Biophys. J.
107
,
2684
(
2014
).
51.
S.
Mora
and
Y.
Pomeau
,
Phys. Rev. E
98
,
040101
(
2018
).
52.
L.
Luo
and
M.
Yi
,
Phys. Rev. E
97
,
042122
(
2018
).
53.
A.
Zhokh
and
P.
Strizhak
,
J. Chem. Phys.
146
,
124704
(
2017
).
54.
N.
Tyagi
and
B. J.
Cherayill
,
J. Phys. Chem. B
121
,
7204
(
2017
).
55.
J.
Wang
,
Y.
Zhang
, and
H.
Zhao
,
Phys. Rev. E
93
,
032144
(
2016
).
56.
Y.
Lanoiselée
and
D. S.
Grebnekov
,
J. Phys. A: Math. Theor.
51
,
145602
(
2018
).
57.
N.
Samanta
and
R.
Chakrabarti
,
Soft Matter
12
,
8554
(
2016
).
58.
S. R.
Vargas
,
L.
Rovigatti
, and
F.
Sciortino
,
Soft Matter
13
,
514
(
2017
).
59.
A.
Cuetos
,
N.
Morillo
, and
A.
Patti
,
Phys. Rev. E
98
,
042129
(
2017
).
60.
A. V.
Chechkin
,
F.
Seno
,
R.
Metzler
, and
I. M.
Sokolov
,
Phys. Rev. X
7
,
021002
(
2017
).
61.
S.
Hapca
,
J. W.
Crawford
, and
I. M.
Young
,
J. R. Soc., Interface
6
,
111
(
2009
).
62.
R.
Jain
and
K. L.
Sebastian
,
J. Chem. Phys.
146
,
214102
(
2017
).
63.
R.
Jain
and
K. L.
Sebastian
,
J. Chem. Sci.
129
,
929
(
2017
).
64.
R.
Jain
and
K. L.
Sebastian
,
J. Phys. Chem. B
120
,
9215
(
2016
).
65.
V.
Sposini
,
A. V.
Chechkin
, and
R.
Metzler
,
J. Phys. A: Math. Theor.
52
,
04LT01
(
2019
).
66.
V.
Sposini
,
A. V.
Chechkin
,
F.
Seno
,
G.
Pagnini
, and
R.
Metzler
,
New J. Phys.
20
,
043044
(
2018
).
67.
M.
Matse
,
M. V.
Chubynsky
, and
J.
Bechhoefer
,
Phys. Rev. E
96
,
042604
(
2017
).
68.
J. P.
Rich
,
G. H.
McKinley
, and
P. S.
Doyle
,
J. Rheol.
55
,
273
(
2011
).
69.
S.
Bhattacharya
,
D. K.
Sharma
,
S.
Saurabh
,
S.
De
,
A.
Sain
,
A.
Nandi
, and
A.
Chowdhury
,
J. Phys. Chem. B
117
,
7771
(
2013
).
70.
C. H.
Lee
,
A. J.
Crosby
,
T.
Emrick
, and
R. C.
Hayward
,
Macromolecules
47
,
741
(
2014
).
71.
E.
Parrish
,
M. A.
Caporizzo
, and
R. J.
Composto
,
J. Chem. Phys.
146
,
203318
(
2017
).
72.
C. A.
Oksanen
and
G.
Zografi
,
Pharm. Res.
7
,
654
(
1990
).
73.
L.
Stubberud
,
H. G.
Arwidsson
,
A.
Larsson
, and
C.
Graffner
,
Int. J. Pharm.
134
,
79
(
1996
).
74.
M. A.
Stephens
,
J. Am. Stat. Assoc.
69
,
730
(
1974
).
75.
A.
Nandi
,
D.
Heinrich
, and
B.
Lindner
,
Phys. Rev. E
86
,
021926
(
2012
).
76.
O.
Werzer
 et al,
Soft Matter
15
,
1853
(
2019
).
77.
78.
79.
J.-H.
Jeon
and
R.
Metzler
,
Phys. Rev. E
81
,
021103
(
2010
).
80.
I. Y.
Wong
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
,
Phys. Rev. Lett.
92
,
178101
(
2004
).
81.
You do not currently have access to this content.