Phase separation can be driven by the association of oppositely charged polyelectrolytes in solution, a process known as complex coacervation. This can manifest as macrophase separation, which arises when both polymer species are homopolyelectrolytes, or can lead to microphase separation when one or both of the charged species are block copolyelectrolytes. This is not a strict dichotomy; recently, macrophase separation was observed for a number of copolymers containing sequence-defined patterns of neutral vs charged monomers, including patterns with lengthy blocks. The specific pattern can affect the strength of this macrophase separation, yet at some block length, microphase separation is expected to emerge. In this article, we describe how to incorporate a theory of sequence-defined coacervation into self-consistent field theory, allowing the study of sequence-defined polyelectrolytes in inhomogeneous systems. We show that blocky sequences can affect electrostatically driven macrophase separation and can transition to microphase separation as the blockiness of sequences increases. This micro- to macrophase separation transition is a function of both the blockiness of the sequence, the number of blocks, and the concentration of salt.

1.
J. F.
Lutz
,
M.
Ouchi
,
D. R.
Liu
, and
M.
Sawamoto
, “
Sequence-controlled polymers
,”
Science
341
,
1238149
(
2013
).
2.
J. F.
Lutz
,
J. M.
Lehn
,
E. W.
Meijer
, and
K.
Matyjaszewski
, “
From precision polymers to complex materials and systems
,”
Nat. Rev. Mater.
1
,
16024
(
2016
).
3.
F. S.
Bates
,
M. A.
Hillmyer
,
T. P.
Lodge
,
C. M.
Bates
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Multiblock polymers: Panacea or Pandora’s box
,”
Science
336
,
434
440
(
2012
).
4.
C. J.
Oldfield
and
A. K.
Dunker
, “
Intrinsically disordered proteins and intrinsically disordered proteins regions
,”
Annu. Rev. Biochem.
83
,
553
584
(
2014
).
5.
C. W.
Pak
,
M.
Kosno
,
A. S.
Holehouse
,
S. B.
Padrick
,
A.
Mittal
,
R.
Ali
,
A. A.
Yunus
,
D. R.
Liu
,
R. V.
Pappu
, and
M. K.
Rosen
, “
Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein
,”
Mol. Cell
63
,
72
85
(
2016
).
6.
M.
Feric
,
N.
Vaidya
,
T. S.
Harmon
,
D. M.
Mitrea
,
L.
Zhu
,
T. M.
Richardson
,
R. W.
Kriwacki
,
R. V.
Pappu
, and
C. P.
Brangwynne
, “
Coexisting liquid phases underlie nucleolar subcompartments
,”
Cell
165
,
1686
1697
(
2016
).
7.
E. W.
Martin
and
T.
Mittag
, “
Relationship of sequence and phase separation in protein low-complexity regions
,”
Biochemistry
57
,
2478
2487
(
2018
).
8.
S. C.
Weber
, “
Sequence-encoded material properties dictate the structure and function of nuclear bodies
,”
Curr. Opin. Cell Biol.
46
,
62
71
(
2017
).
9.
J.
Wang
,
J.-M.
Choi
,
A. S.
Holehouse
,
H. O.
Lee
,
X.
Zhang
,
M.
Jahnel
,
S.
Maharana
,
R.
Lemaitre
,
A.
Pozniakovsky
,
D.
Dreschel
,
I.
Poser
,
R. V.
Pappu
,
S.
Alberti
, and
A. A.
Hyman
, “
A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins
,”
Cell
174
,
688
699
(
2018
).
10.
J. R.
Simon
,
N. J.
Carroll
,
M.
Rubinstein
,
A.
Chilkoti
, and
G. P.
López
, “
Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity
,”
Nat. Chem.
9
,
509
538
(
2017
).
11.
F. G.
Quiroz
and
A.
Chilkoti
, “
Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers
,”
Nat. Mater.
14
,
1164
1171
(
2015
).
12.
A. A.
Hyman
,
C. A.
Weber
, and
F.
Jülicher
, “
Liquid-liquid phase separation in biology
,”
Annu. Rev. Cell Dev. Biol.
30
,
39
58
(
2014
).
13.
S. F.
Banani
,
H. O.
Lee
,
A. A.
Hyman
, and
M. K.
Rosen
, “
Biomolecular condensates: Organizers of cellular biochemistry
,”
Nat. Rev. Mol. Cell Biol.
18
,
285
298
(
2017
).
14.
A. A.
Hyman
and
K.
Simons
, “
Beyond oil and water—Phase transitions in cells
,”
Science
337
,
1047
1049
(
2012
).
15.
S. L.
Perry
, “
Phase separation: Bridging polymer physics and biology
,”
Curr. Opin. Colloid Interface Sci.
39
,
86
97
(
2019
).
16.
H. G.
Bundenberg de Jong
and
H. R.
Kruyt
, “
Coacervation (partial miscibility in colloid systems)
,”
Proc. Koninklijke Nederlandse Akad. Wetenschappen
32
,
849
856
(
1929
).
17.
D.
Priftis
and
M.
Tirrell
, “
Phase behaviour and complex coacervation of aqueous polypeptide solutions
,”
Soft Matter
8
,
9396
9405
(
2012
).
18.
D.
Priftis
,
N.
Laugel
, and
M.
Tirrell
, “
Thermodynamic characterization of polypeptide complex coacervation
,”
Langmuir
28
,
15947
15957
(
2012
).
19.
R.
Chollakup
,
J. B.
Beck
,
K.
Dirnberger
,
M.
Tirrell
, and
C. D.
Eisenbach
, “
Polyelectrolyte molecular weight and salt effects on the phase behavior and coacervation of aqueous solutions of poly(acrylic acid) sodium salt and poly(allylamine) hydrochloride
,”
Macromolecules
46
,
2376
2390
(
2013
).
20.
S.
Perry
,
Y.
Li
,
D.
Priftis
,
L.
Leon
, and
M.
Tirrell
, “
The effect of salt on the complex coacervation of vinyl polyelectrolytes
,”
Polymers
6
,
1756
1772
(
2014
).
21.
S. L.
Perry
,
L.
Leon
,
K. Q.
Hoffmann
,
M. J.
Kade
,
D.
Priftis
,
K. A.
Black
,
D.
Wong
,
R. A.
Klein
,
C. F.
Pierce
 III
,
K. O.
Margossian
,
J. K.
Whitmer
,
J.
Qin
,
J. J.
de Pablo
, and
M.
Tirrell
, “
Chirality-selected phase behaviour in ionic polypeptide complexes
,”
Nat. Commun.
6
,
6052
(
2015
).
22.
L.
Li
,
S.
Srivastava
,
M.
Andreev
,
A. B.
Marciel
,
J. J.
de Pablo
, and
M. V.
Tirrell
, “
Phase behavior and salt partitioning in polyelectrolyte complex coacervates
,”
Macromolecules
51
,
2988
2995
(
2018
).
23.
B. M.
Johnston
,
C. W.
Johnston
,
R. A.
Letteri
,
T. K.
Lytle
,
C. E.
Sing
,
T.
Emrick
, and
S. L.
Perry
, “
The effect of comb architecture on complex coacervation
,”
Org. Biomol. Chem.
15
,
7630
7642
(
2017
).
24.
D.
Priftis
,
X.
Xia
,
K. O.
Margossian
,
S. L.
Perry
,
L.
Leon
,
J.
Qin
,
J. J.
de Pablo
, and
M.
Tirrell
, “
Ternary, tunable polyelectrolyte complex fluids driven by complex coacervation
,”
Macromolecules
47
,
3076
3085
(
2014
).
25.
J. E.
Laaser
,
M.
McGovern
,
Y.
Jiang
,
E.
Lohmann
,
T. M.
Reineke
,
D. C.
Morse
,
K. D.
Dorfman
, and
T. P.
Lodge
, “
Equilibration of micelle-polyelectrolyte complexes: Mechanistic differences between static and annealed charge distributions
,”
J. Phys. Chem. B
121
,
4631
4641
(
2017
).
26.
S.
Tabandeh
and
L.
Leon
, “
Engineering peptide-based polyelectrolyte complexes with increased hydrophobicity
,”
Molecules
24
,
868
(
2019
).
27.
J.
van der Gucht
,
E.
Spruijt
,
M.
Lemmers
, and
M. A. C.
Stuart
, “
Polyelectrolyte complexes: Bulk phases and colloidal systems
,”
J. Colloid Interface Sci.
361
,
407
422
(
2011
).
28.
C.
Schmitt
and
S. L.
Turgeon
, “
Protein/polysaccharide complexes and coacervates in food systems
,”
Adv. Colloid Interface Sci.
167
,
63
70
(
2011
).
29.
K. A.
Black
,
D.
Priftis
,
S. L.
Perry
,
J.
Yip
,
W. Y.
Byun
, and
M.
Tirrell
, “
Protein encapsulation via polypeptide complex coacervation
,”
ACS Macro Lett.
3
,
1088
1091
(
2014
).
30.
A.
Harada
and
K.
Kataoka
, “
Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers
,”
Science
283
,
65
67
(
1999
).
31.
A.
Harada
and
K.
Kataoka
, “
Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments
,”
Macromolecules
28
,
5294
5299
(
1995
).
32.
I. K.
Voets
,
A.
de Keizer
, and
M. A.
Cohen Stuart
, “
Complex coacervate core micelles
,”
Adv. Colloid Interface Sci.
147
,
300
318
(
2009
).
33.
M. A.
Cohen Stuart
,
N. A. M.
Besseling
, and
R. G.
Fokkink
, “
Formation of micelles with complex coacervate cores
,”
Langmuir
14
,
6846
6849
(
1998
).
34.
Y.
Yan
,
A.
de Keizer
,
M. A.
Cohen Stuart
,
M.
Drechsler
, and
N. A. M.
Besseling
, “
Stability of complex coacervate core micelles containing metal coordination polymer
,”
J. Phys. Chem. B
112
,
10908
10914
(
2008
).
35.
D. V.
Pergushov
,
A. H. E.
Müller
, and
F. H.
Schacher
, “
Micellar interpolyelectrolyte complexes
,”
Chem. Soc. Rev.
41
,
6888
6901
(
2012
).
36.
H. M.
van der Kooij
,
E.
Spruijt
,
I. K.
Voets
,
R. G.
Fokkink
,
M. A.
Cohen Stuart
, and
J.
van der Gucht
, “
On the stability and morphology of complex coacervate core micelles: From spherical to wormlike micelles
,”
Langmuir
28
,
14180
14191
(
2012
).
37.
D. V.
Krogstad
,
N. A.
Lynd
,
D.
Miyajima
,
J.
Gopez
,
C. J.
Hawker
,
E. J.
Kramer
, and
M. V.
Tirrell
, “
Structural evolution of polyelectrolyte complex core micelles and ordered-phase bulk materials
,”
Macromolecules
47
,
8026
8032
(
2014
).
38.
D. V.
Krogstad
,
N. A.
Lynd
,
S.-H.
Choi
,
J. M.
Spruell
,
C. J.
Hawker
,
E. J.
Kramer
, and
M. V.
Tirrell
, “
Effects of polymer and salt concentration on the structure and properties of triblock copolymer coacervate hydrogels
,”
Macromolecules
46
,
1512
1518
(
2013
).
39.
D. V.
Krogstad
,
S.-H.
Choi
,
N. A.
Lynd
,
D. J.
Audus
,
S. L.
Perry
,
J. D.
Gopez
,
C. J.
Hawker
,
E. J.
Kramer
, and
M. V.
Tirrell
, “
Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers
,”
J. Phys. Chem.
118
,
13011
13018
(
2014
).
40.
S.
Srivastava
,
M.
Andreev
,
A. E.
Levi
,
D. J.
Goldfeld
,
J.
Mao
,
W. T.
Heller
,
J. J.
de Pablo
, and
M. V.
Tirrell
, “
Gel phase formation in dilute triblock copolyelectrolyte complexes
,”
Nat. Commun.
8
,
14131
(
2017
).
41.
H.
Wu
,
J. M.
Ting
,
O.
Werba
,
S.
Meng
, and
M. V.
Tirrell
, “
Non-equilibrium phenomena and kinetic pathways in self-assembled polyelectrolyte complexes
,”
J. Chem. Phys.
149
,
163330
(
2018
).
42.
J. M.
Ting
,
H.
Wu
,
A.
Herzog-Arbeitman
,
S.
Srivastava
, and
M. V.
Tirrell
, “
Synthesis and assembly of designer styrenic diblock polyelectrolytes
,”
ACS Macro Lett.
7
,
726
733
(
2018
).
43.
J. C.
Barnes
,
D. J. C.
Ehrlich
,
A. X.
Gao
,
F. A.
Leibfarth
,
Y.
Jiang
,
E.
Zhou
,
T. F.
Jamison
, and
J. A.
Johnson
, “
Iterative exponential growth of stereo- and sequence-controlled polymers
,”
Nat. Chem.
7
,
810
815
(
2015
).
44.
N.
Zydziak
,
F.
Feist
,
B.
Huber
,
J. O.
Mueller
, and
C.
Barner-Kowollik
, “
Photo-induced sequence defined macromolecules via hetero bifunctional synthons
,”
Chem. Commun.
51
,
1799
1802
(
2015
).
45.
A. M.
Rosales
,
R. A.
Segalman
, and
R. N.
Zuckermann
, “
Polypeptoids: A model system to study the effect of monomer sequence on polymer properties and self-assembly
,”
Soft Matter
9
,
8400
8414
(
2013
).
46.
S. C.
Solleder
,
D.
Zengel
,
K. S.
Wetzel
, and
M. A. R.
Meier
, “
A scalable and high-yield strategy for the synthesis of sequence-defined macromolecules
,”
Angew. Chem., Int. Ed.
55
,
1204
1207
(
2016
).
47.
M. E.
Seitz
,
C. D.
Chan
,
K. L.
Opper
,
T. W.
Baughman
,
K. B.
Wagener
, and
K. I.
Winey
, “
Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers
,”
J. Am. Chem. Soc.
132
,
8165
8174
(
2010
).
48.
H. K.
Murnen
,
A. R.
Khokhlov
,
P. G.
Khalatur
,
R. A.
Segalman
, and
R. N.
Zuckermann
, “
Impact of hydrophobic sequence patterning on the coil-to-globule transition of protein-like polymers
,”
Macromolecules
45
,
5229
5236
(
2012
).
49.
A. L.
Patterson
,
S. P. O.
Danielsen
,
B.
Yu
,
E. C.
Davidson
,
G. H.
Fredrickson
, and
R. A.
Segalman
, “
Sequence effects on block copolymer self-assembly through tuning chain conformation and segregation strength utilizing sequence-defined polypeptoids
,”
Macromolecules
52
,
1277
1286
(
2019
).
50.
A. L.
Patterson
,
B.
Wenning
,
G.
Rizis
,
D. R.
Calabrese
,
J. A.
FInlay
,
S. C.
Franco
,
R. N.
Zuckermann
,
A. S.
Clare
,
E. J.
Kramer
,
C. K.
Ober
, and
R. A.
Segalman
, “
Role of backbone chemistry and monomer sequence in amphiphilic oligopeptide- and oligopeptoid-functionalized PDMS- and PEO-based block copolymers for marine antifouling and fouling release coatings
,”
Macromolecules
50
,
2656
2667
(
2017
).
51.
W. G.
Levine
,
Y.
Seo
,
J. R.
Broan
, and
L. M.
Hall
, “
Effect of sequence dispersity on morphology of tapered diblock copolymers from molecular dynamics simulations
,”
J. Chem. Phys.
145
,
234907
(
2016
).
52.
V.
Meenakshisundaram
,
J.-H.
Hung
,
T. K.
Patra
, and
D. S.
Simmons
, “
Designing sequence-specific copolymer compatibilizers using a molecular-dynamics-simulation-based genetic algorithm
,”
Macromolecules
50
,
1155
1166
(
2017
).
53.
S.
Mao
,
Q. J.
MacPherson
,
S. S.
He
,
E.
Coletta
, and
A. J.
Spakowitz
, “
Impact of conformational and chemical correlations on microphase segregation in random copolymers
,”
Macromolecules
49
,
4358
4368
(
2016
).
54.
I.
Michaeli
,
J. T. G.
Overbeek
, and
M.
Voorn
, “
Phase separation of polyelectrolyte solutions
,”
J. Polym. Sci.
23
,
443
450
(
1957
).
55.
J. T. G.
Overbeek
and
M.
Voorn
, “
Phase separation in polyelectrolyte solutions. Theory of complex coacervation
,”
J. Cell. Comp. Physiol.
49
,
7
26
(
1957
).
56.
A.
Veis
and
C.
Aranyi
, “
Phase separation in polyelectrolyte systems. I. Complex coacervates of gelatin
,”
J. Phys. Chem.
64
,
1203
1210
(
1960
).
57.
V. Y.
Borue
and
I. Y.
Erukhimovich
, “
A statistical theory of globular polyelectrolyte complexes
,”
Macromolecules
23
,
3625
3632
(
1990
).
58.
M.
Castelnovo
and
J.-F.
Joanny
, “
Complexation between oppositely charged polyelectrolytes: Beyond the random phase approximation
,”
Eur. Phys. J. E
6
,
377
386
(
2001
).
59.
A.
Kudlay
and
M.
Olvera de la Cruz
, “
Precipitation of oppositely charged polyelectrolytes in salt solutions
,”
J. Chem. Phys.
120
,
404
412
(
2004
).
60.
A.
Kudlay
,
A. V.
Ermoshkin
, and
M.
Olvera de la Cruz
, “
Complexation of oppositely charged polyelectrolytes: Effect of ion pair formation
,”
Macromolecules
37
,
9231
9241
(
2004
).
61.
K. T.
Delaney
and
G. H.
Fredrickson
, “
Theory of polyelectrolyte complexation—Complex coacervates are self-coacervates
,”
J. Chem. Phys.
146
,
224902
(
2017
).
62.
J.
Lee
,
Y. O.
Popov
, and
G. H.
Fredrickson
, “
Complex coacervation: A field theoretic simulation study of polyelectrolyte complexation
,”
J. Chem. Phys.
128
,
224908
(
2008
).
63.
R. A.
Riggleman
,
R.
Kumar
, and
G. H.
Fredrickson
, “
Investigation of the interfacial tension of complex coacervates using field-theoretic simulations
,”
J. Chem. Phys.
136
,
024903
(
2012
).
64.
D. J.
Audus
,
J. D.
Gopez
,
D. V.
Krogstad
,
N. A.
Lynd
,
E. J.
Kramer
,
C. J.
Hawker
, and
G. H.
Fredrickson
, “
Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model
,”
Soft Matter
11
,
1214
1225
(
2015
).
65.
S. P. O.
Danielsen
,
J.
McCarty
,
J.-E.
Shea
,
K. T.
Delaney
, and
G. H.
Fredrickson
, “
Molecular design of self-coacervation phenomena in block polyampholytes
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
8224
8232
(
2019
).
66.
S. P. O.
Danielsen
,
J.
McCarty
,
J.-E.
Shea
,
K.
Delaney
, and
G.
Fredrickson
, “
Small ion effects on self-coacervation phenomena in block polyampholytes
,”
J. Chem. Phys.
151
,
034904
(
2019
).
67.
J.
McCarty
,
K. T.
Delaney
,
S. P. O.
Danielsen
,
G. H.
Fredrickson
, and
J.-E.
Shea
, “
Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins
,”
J. Phys. Chem. Lett.
10
,
1644
1652
(
2019
).
68.
J.
Qin
,
D.
Priftis
,
R.
Farina
,
S. L.
Perry
,
L.
Leon
,
J.
Whitmer
,
K.
Hoffmann
,
M.
Tirrell
, and
J. J.
de Pablo
, “
Interfacial tension of polyelectrolyte complex coacervate phases
,”
ACS Macro Lett.
3
,
565
568
(
2014
).
69.
J.
Qin
and
J. J.
de Pablo
, “
Criticality and connectivity in macromolecular charge complexation
,”
Macromolecules
49
,
8789
8800
(
2016
).
70.
A. M.
Rumyantsev
and
J. J.
de Pablo
, “
Liquid crystalline and isotropic coacervates of semiflexible polyanions and flexible polycations
,”
Macromolecules
52
,
5140
5156
(
2019
).
71.
A. M.
Rumyantsev
,
E. B.
Zhulina
, and
O. V.
Borisov
, “
Scaling theory of complex coacervate core micelles
,”
ACS Macro Lett.
7
,
811
816
(
2018
).
72.
A. M.
Rumyantsev
,
E. B.
Zhulina
, and
O. V.
Borisov
, “
Complex coacervate of weakly charged chains: Diagram of states
,”
Macromolecules
51
,
3788
3801
(
2018
).
73.
A. M.
Rumyantsev
,
E. Y.
Kramarenko
, and
O. V.
Borisov
, “
Microphase separation in complex coacervate due to incompatibility between polyanion and polycation
,”
Macromolecules
51
,
6587
6601
(
2018
).
74.
M.
Rubinstein
,
Q.
Liao
, and
S.
Panyukov
, “
Structure of liquid coacervates formed by oppositely charged polyelectrolytes
,”
Macromolecules
51
,
9572
9588
(
2018
).
75.
Z.
Wang
and
M.
Rubinstein
, “
Regimes of conformational transitions of a diblock polyampolyte
,”
Macromolecules
39
,
5897
5912
(
2006
).
76.
S.
Adhikari
,
M. A.
Leaf
, and
M.
Muthukumar
, “
Polyelectrolyte complex coacervation by electrostatic dipolar interactions
,”
J. Chem. Phys.
149
,
163308
(
2018
).
77.
S. L.
Perry
and
C. E.
Sing
, “
Prism-based theory of complex coacervation: Excluded volume versus chain correlation
,”
Macromolecules
48
,
5040
5053
(
2015
).
78.
P.
Zhang
,
N. M.
Alsaifi
,
J.
Wu
, and
Z.-G.
Wang
, “
Polyelectrolyte complex coacervation: Effects of concentration asymmetry
,”
J. Chem. Phys.
149
,
163303
(
2018
).
79.
P.
Zhang
,
K.
Shen
,
N. M.
Alsaifi
, and
Z.-G.
Wang
, “
Salt partitioning in complex coacervation of symmetric polyelectrolytes
,”
Macromolecules
51
,
5586
5593
(
2018
).
80.
Z.
Ou
and
M.
Muthukumar
, “
Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations
,”
J. Chem. Phys.
124
,
154902
(
2006
).
81.
A.
Salehi
and
R. G.
Larson
, “
A molecular thermodynamic model of complexation in mixtures of oppositely charged polyelectrolytes with explicit account of charge association/dissociation
,”
Macromolecules
49
,
9706
9719
(
2016
).
82.
S.
Friedowitz
,
A.
Salehi
,
R. G.
Larson
, and
J.
Qin
, “
Role of electrostatic correlations in polyelectrolyte charge association
,”
J. Chem. Phys.
149
,
163335
(
2018
).
83.
R.
Zhang
and
B. I.
Shklovskii
, “
Phase diagram of solution of oppositely charged polyelectrolytes
,”
Physica A
352
,
216
238
(
2005
).
84.
J.
Lou
,
S.
Friedowitz
,
J.
Qin
, and
Y.
Xia
, “
Tunable coacervation of well-defined homologous polyanions and polycations by local polarity
,”
ACS Cent. Sci.
5
,
549
557
(
2019
).
85.
C. E.
Sing
, “
Development of the modern theory of polymeric complex coacervation
,”
Adv. Colloid Interface Sci.
239
,
2
16
(
2017
).
86.
T. K.
Lytle
and
C. E.
Sing
, “
Transfer matrix theory of polymer complex coacervation
,”
Soft Matter
13
,
7001
7012
(
2017
).
87.
T. K.
Lytle
and
C. E.
Sing
, “
Tuning chain interaction entropy in complex coacervation using polymer stiffness, architecture, and salt valency
,”
Mol. Syst. Des. Eng.
3
,
183
196
(
2018
).
88.
T. K.
Lytle
,
A. J.
Salazar
, and
C. E.
Sing
, “
Interfacial properties of polymeric complex coacervates from simulation and theory
,”
J. Chem. Phys.
149
,
163315
(
2018
).
89.
G. M. C.
Ong
and
C. E.
Sing
, “
Mapping the phase behavior of coacervate-driven self-assembly in diblock copolyelectrolytes
,”
Soft Matter
15
,
5116
5127
(
2019
).
90.
J. J.
Madinya
,
L.-W.
Chang
,
S. L.
Perry
, and
C. E.
Sing
, “
Sequence-dependent self-coacervation in high charge-density polyampholytes
,”
Mol. Syst. Des. Eng.
(published online,
2019
).
91.
T. K.
Lytle
,
L.-W.
Chang
,
N.
Markiewicz
,
S. L.
Perry
, and
C. E.
Sing
, “
Designing electrostatic interactions via polyelectrolyte monomer sequence
,”
ACS Cent. Sci.
5
,
709
718
(
2019
).
92.
L. W.
Chang
,
T. K.
Lytle
,
M.
Radhakrishna
,
J. J.
Madinya
,
J.
Vélez
,
C. E.
Sing
, and
S. L.
Perry
, “
Sequence and entropy-based control of complex coacervates
,”
Nat. Commun.
8
,
1273
(
2017
).
93.
M.
Andreev
,
V. M.
Prabhu
,
J. F.
Douglas
,
M. V.
Tirrell
, and
J. J.
de Pablo
, “
Complex coacervation in polyelectrolytes from a coarse-grained model
,”
Macromolecules
51
,
6717
6723
(
2018
).
94.
K. Q.
Hoffmann
,
S. L.
Perry
,
L.
Leon
,
D.
Priftis
,
M.
Tirrell
, and
J. J.
de Pablo
, “
A molecular view of the role of chirality in charge-driven polypeptide complexation
,”
Soft Matter
11
,
1525
1538
(
2015
).
95.
M.
Radhakrishna
,
K.
Basu
,
Y.
Liu
,
R.
Shamsi
,
S. L.
Perry
, and
C. E.
Sing
, “
Molecular connectivity and correlation effects on polymer coacervation
,”
Macromolecules
50
,
3030
3037
(
2017
).
96.
Y.-H.
Lin
,
J. D.
Forman-Kay
, and
H. S.
Chan
, “
Sequence-specific polyampholyte phase separation in membraneless organelles
,”
Phys. Rev. Lett.
117
,
178101
(
2016
).
97.
Y. H.
Lin
,
J.
Song
,
J. D.
Forman-Kay
, and
H. S.
Chan
, “
Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins
,”
J. Mol. Liq.
228
,
176
193
(
2017
).
98.
Y.-H.
Lin
,
J. D.
Forman-Kay
, and
H. S.
Chan
, “
Theories for sequence-dependent phase behaviors of biomolecular condensates
,”
Biochemistry
57
,
2499
2508
(
2018
).
99.
A. M.
Rumyantsev
,
N. E.
Jackson
,
B.
Yu
,
J. M.
Ting
,
W.
Chen
,
M. V.
Tirrell
, and
J. J.
de Pablo
, “
Controlling complex coacervation via random polyelectrolyte sequences
,”
ACS Macro Lett.
8
,
1296
1302
(
2019
).
100.
G. S.
Manning
, “
Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties
,”
J. Chem. Phys.
51
,
924
933
(
1969
).
101.
M.
Muthukumar
, “
Theory of counter-ion condensation on flexible polyelectrolytes: Adsorption mechanism
,”
J. Chem. Phys.
120
,
9343
9350
(
2004
).
102.
S.
Liu
and
M.
Muthukumar
, “
Langevin dynamics simulation of counterion distribution around isolated flexible polyelectrolyte chains
,”
J. Chem. Phys.
116
,
9975
9982
(
2002
).
103.
Q.
Wang
and
J. B.
Schlenoff
, “
The polyelectrolyte complex/coacervate continuum
,”
Macromolecules
47
,
3108
3116
(
2014
).
104.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
1987
).
105.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
1979
).
106.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
Ithaca, NY
,
1953
).
107.
G.
Fredrickson
,
The Equilibrium Theory of Inhomogeneous Polymers
(
Oxford University Press
,
2013
).
108.
A.-C.
Shi
and
J.
Noolandi
, “
Theory of inhomogeneous weakly charged polyelectrolytes
,”
Macromol. Theory Simul.
8
,
214
229
(
1999
).
109.
E.
Spruijt
,
A. H.
Westphal
,
J. W.
Borst
,
M. A.
Cohen Stuart
, and
J.
van der Gucht
, “
Binodal compositions of polyelectrolyte complexes
,”
Macromolecules
43
,
6476
6484
(
2010
).
110.
C. E.
Sing
and
M.
Olvera de la Cruz
, “
Polyelectrolyte blends and nontrivial behavior in effective Flory-Huggins parameters
,”
ACS Macro Lett.
3
,
698
702
(
2014
).
111.
C. E.
Sing
,
J. W.
Zwanikken
, and
M.
Olvera de la Cruz
, “
Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity
,”
J. Chem. Phys.
142
,
034902
(
2015
).
112.
J. W.
Zwanikken
,
P. K.
Jha
, and
M.
Olvera de la Cruz
, “
A practical integral equation for the structure and thermodynamics of hard sphere Coulomb fluids
,”
J. Chem. Phys.
135
,
064106
(
2011
).
113.
M.
Muller
and
G. D.
Smith
, “
Phase separation in binary mixtures containing polymers: A quantitative comparison of single-chain-in-mean-field simulations and computer simulations of the corresponding multichain systems
,”
J. Poly. Sci., Part B: Poly. Phys.
43
,
934
958
(
2005
).
114.
K. C.
Daoulas
,
M.
Muller
,
J. J.
de Pablo
,
P. F.
Nealey
, and
G. D.
Smith
, “
Morphology of multi-component polymer systems: Single chain in mean field simulation studies
,”
Soft Matter
2
,
573
583
(
2006
).
115.
C. M.
Bates
and
F. S.
Bates
, “
50th anniversary perspective: Block polymers—Pure potential
,”
Macromolecules
50
,
3
22
(
2017
).
116.
A.
Rumyantsev
,
A.
Gavrilov
, and
E. Y.
Kramarenko
, “
Electrostatically stabilized microphase separation in blends of oppositely charged polyelectrolytes
,”
Macromolecules
52
,
7167
7174
(
2019
).
117.
A.
Rumyantsev
and
I.
Potemkin
, “
Explicit description of complexation between oppositely charged polyelectrolytes as an advantage of the random phase approximation over the scaling approach
,”
Phys. Chem. Chem. Phys.
19
,
27580
27592
(
2017
).
118.
K.
Shen
and
Z.-G.
Wang
, “
Polyelectrolyte chain structure and solution phase behavior
,”
Macromolecules
51
,
1706
1717
(
2018
).
119.
L.
Leibler
, “
Theory of microphase separation in block copolymers
,”
Macromolecules
13
,
1602
1617
(
1980
).
120.
G.
Fredrickson
and
E.
Helfand
, “
Fluctuation effects in the theory of microphase separation in block copolymers
,”
J. Chem. Phys.
87
,
697
705
(
1987
).
You do not currently have access to this content.