We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes with different degrees of deformation at 300 K. We found that the number of hydrogen bonds that water forms depends on nanotube topology, leading to enhancement or suppression of water diffusion. The simulation results reveal that more realistic nanotubes should be considered to understand the confined water diffusion behavior, at least for the narrowest nanotubes, when the interaction between water molecules and carbon atoms is relevant.

1.
M. A.
Ratner
and
D.
Ratner
,
Nanotechnology: A Gentle Introduction to the Next Big Idea
(
Prentice Hall Professional
,
2003
), Vol. 1, p.
133
.
2.
T. O.
Fonseca
,
M. M.
Szortyka
,
P.
Ternes
,
C.
Gavazzoni
,
A. B.
de Oliveira
, and
M. C.
Barbosa
,
Sci. China, Phys., Mech. Astron.
62
,
107009
(
2019
).
3.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature
414
,
188
(
2001
).
4.
M.
Majumder
,
N.
Chopra
,
R.
Andrews
, and
B. J.
Hinds
,
Nature
438
,
44
(
2005
).
5.
M.
Whitby
and
N.
Quirke
,
Nat. Nanotechnol.
2
,
87
(
2007
).
6.
R.
El-Ganainy
,
K. G.
Makris
,
M.
Khajavikhan
,
Z. H.
Musslimani
,
S.
Rotter
, and
D. N.
Christodoulides
,
Nat. Phys.
14
,
11
(
2018
).
7.
J. K.
Holt
,
A.
Noy
,
T.
Huser
,
D.
Eaglesham
, and
O.
Bakajin
,
Nano Lett.
4
,
2245
(
2004
).
8.
S.
Li
,
W.
Lew
,
J.
Bland
,
L.
Lopez-Diaz
,
M.
Natali
,
C.
Vaz
, and
Y.
Chen
,
Nature
415
,
600
(
2002
).
9.
A.
Alexiadis
and
S.
Kassinos
,
Chem. Rev.
108
,
5014
(
2008
).
10.
K. R.
Harris
and
L. A.
Woolf
,
J. Chem. Soc., Faraday Trans. 1
76
,
377
(
1980
).
11.
Y.-C.
Liu
,
J.-W.
Shen
,
K. E.
Gubbins
,
J. D.
Moore
,
T.
Wu
, and
Q.
Wang
,
Phys. Rev. B
77
,
125438
(
2008
).
12.
A.
Barati Farimani
and
N.
Aluru
,
J. Phys. Chem. B
115
,
12145
(
2011
).
13.
Y.-g.
Zheng
,
H.-f.
Ye
,
Z.-q.
Zhang
, and
H.-w.
Zhang
,
Phys. Chem. Chem. Phys.
14
,
964
(
2012
).
14.
M. H.
Köhler
,
J. R.
Bordin
,
C. F.
de Matos
, and
M. C.
Barbosa
,
Chem. Eng. Sci.
203
,
54
(
2019
).
15.
M. H.
Köhler
and
C.
Gavazzoni
,
J. Phys. Chem. C
123
,
13968
(
2019
).
16.
J.
Wang
,
Y.
Zhu
,
J.
Zhou
, and
X.-H.
Lu
,
Phys. Chem. Chem. Phys.
6
,
829
(
2004
).
17.
A. I.
Kolesnikov
,
J.-M.
Zanotti
,
C.-K.
Loong
,
P.
Thiyagarajan
,
A. P.
Moravsky
,
R. O.
Loutfy
, and
C. J.
Burnham
,
Phys. Rev. Lett.
93
,
035503
(
2004
).
18.
N.
Naguib
,
H.
Ye
,
Y.
Gogotsi
,
A. G.
Yazicioglu
,
C. M.
Megaridis
, and
M.
Yoshimura
,
Nano Lett.
4
,
2237
(
2004
).
19.
E.
Mamontov
,
C.
Burnham
,
S.-H.
Chen
,
A.
Moravsky
,
C.-K.
Loong
,
N.
De Souza
, and
A.
Kolesnikov
,
J. Chem. Phys.
124
,
194703
(
2006
).
20.
C. Y.
Won
,
S.
Joseph
, and
N.
Aluru
,
J. Chem. Phys.
125
,
114701
(
2006
).
21.
Q.
Wang
,
Int. J. Solids Struct.
41
,
5451
(
2004
).
22.
R.
Ansari
,
M.
Mirnezhad
, and
S.
Sahmani
,
Meccanica
48
,
1355
(
2013
).
23.
Y.
Liu
,
Q.
Wang
,
L.
Zhang
, and
T.
Wu
,
Langmuir
21
,
12025
(
2005
).
24.
B.
Xu
,
Y.
Li
,
T.
Park
, and
X.
Chen
,
J. Chem. Phys.
135
,
144703
(
2011
).
25.
G.
Arora
,
N. J.
Wagner
, and
S. I.
Sandler
,
Langmuir
20
,
6268
(
2004
).
26.
A. B.
de Oliveira
,
H.
Chacham
,
J. S.
Soares
,
T. M.
Manhabosco
,
H. F.
de Resende
, and
R. J.
Batista
,
Carbon
96
,
616
(
2016
).
27.
B. H. S.
Mendonça
,
D. N.
de Freitas
,
M. H.
Köhler
,
R. J. C.
Batista
,
M. C.
Barbosa
, and
A. B.
de Oliveira
,
Physica A
517
,
491
(
2019
).
29.
S.
Iijima
and
T.
Ichihashi
,
Nature
363
,
603
(
1993
).
30.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
31.
J. R.
Bordin
,
A. B.
de Oliveira
,
A.
Diehl
, and
M. C.
Barbosa
,
J. Chem. Phys.
137
,
084504
(
2012
).
32.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
33.
D.
Ostler
,
S. K.
Kannam
,
P. J.
Daivis
,
F.
Frascoli
, and
B.
Todd
,
J. Phys. Chem. C
121
,
28158
(
2017
).
34.
I.
Hanasaki
and
A.
Nakatani
,
J. Chem. Phys.
124
,
144708
(
2006
).
35.
E.
Kotsalis
,
J. H.
Walther
, and
P.
Koumoutsakos
,
Int. J. Multiphase Flow
30
,
995
(
2004
).
36.
S.
Joseph
and
N.
Aluru
,
Nano Lett.
8
,
452
(
2008
).
You do not currently have access to this content.