Short range ordered (SRO) plasmonic nanohole arrays have a distinct surface plasmon polariton resonance in the visible region and exhibit an excellent sensing capability toward changes in the surrounding refractive index. While SRO and perfectly ordered plasmonic hole arrays have similar sensing properties, SRO arrays have clear advantages in fabrication, simplicity, and scalability. In this study, we use SRO gold nanoholes, which are subjected to pressure and temperature cycles, for vacuum and temperature sensing. The response of the transmission spectra to pressure changes in the range 10−3–105 Pa and temperature scans in the range 20–400 °C was recorded. Upon pressure cycling, a reversible response was observed. Upon initial temperature annealing, an irreversible blue shift in the resonance dip position was observed. Upon further temperature cycling, the resonance dip position shifts reversibly, with a notable red shift upon temperature increase. The results are discussed and interpreted based on possible molecular adsorption/desorption upon pressure cycling and in terms of the gold film’s recrystallization, thermal expansion, and free electron density variations.

1.
S. A.
Maier
,
Plasmonics: Fundamentals and Applications
(
Springer
,
New York
,
2007
).
2.
J.
Gersten
and
A.
Nitzan
,
J. Chem. Phys.
73
(
7
),
3023
3037
(
1980
).
3.
P. F.
Liao
and
A.
Wokaun
,
J. Chem. Phys.
76
(
1
),
751
752
(
1982
).
4.
E.
Hao
and
G. C.
Schatz
,
J. Chem. Phys.
120
(
1
),
357
366
(
2004
).
5.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
,
J. Phys. Chem. B
107
(
3
),
668
677
(
2003
).
6.
M. M.
Miller
and
A. A.
Lazarides
,
J. Phys. Chem. B
109
(
46
),
21556
21565
(
2005
).
7.
T.
Li
,
X.
Wu
,
F.
Liu
, and
N.
Li
,
Analyst
142
(
2
),
248
256
(
2017
).
8.
C.
Valsecchi
and
A. G.
Brolo
,
Langmuir
29
(
19
),
5638
5649
(
2013
).
9.
A. G.
Brolo
,
J.
Ferreira
,
M. J. L.
Santos
,
C.
Escobedo
,
D.
Sinton
,
E. M.
Girotto
,
F.
Eftekhari
, and
R.
Gordon
,
Proc. SPIE
7035
,
703503
(
2008
).
10.
A.
De Leebeeck
,
L. K. S.
Kumar
,
V.
de Lange
,
D.
Sinton
,
R.
Gordon
, and
A. G.
Brolo
,
Anal. Chem.
79
(
11
),
4094
4100
(
2007
).
11.
M. E.
Stewart
,
C. R.
Anderton
,
L. B.
Thompson
,
J.
Maria
,
S. K.
Gray
,
J. A.
Rogers
, and
R. G.
Nuzzo
,
Chem. Rev.
108
(
2
),
494
521
(
2008
).
12.
J.
Junesch
,
T.
Sannomiya
, and
A.
Dahlin
,
ACS Nano
6
(
11
),
10405
10415
(
2012
).
13.
Y.
Ikenoya
,
M.
Susa
,
J.
Shi
,
Y.
Nakamura
,
A. B.
Dahlin
, and
T.
Sannomiya
,
J. Phys. Chem. C
117
(
12
),
6373
6382
(
2013
).
14.
F. J.
Garcia de Abajo
,
Rev. Mod. Phys.
79
(
4
),
1267
1290
(
2007
).
15.
J.
Junesch
and
T.
Sannomiya
,
J. Phys. Chem. Lett.
5
(
1
),
247
252
(
2014
).
16.
T. H.
Reilly
,
R. C.
Tenent
,
T. M.
Barnes
,
K. L.
Rowlen
, and
J.
van de Lagemaat
,
ACS Nano
4
(
2
),
615
624
(
2010
).
17.
J.
Homola
,
I.
Koudela
, and
S. S.
Yee
,
Sens. Actuators, B
54
(
1-2
),
16
24
(
1999
).
18.
Y.
Xu
,
P.
Bai
,
X. D.
Zhou
,
Y.
Akimov
,
C. E.
Png
,
L. K.
Ang
,
W.
Knoll
, and
L.
Wu
,
Adv. Opt. Mater.
7
(
9
),
1801433
(
2019
).
19.
T.
Ebbesen
,
H.
Lezec
,
H.
Ghaemi
,
T.
Thio
, and
P.
Wolff
,
Nature
391
(
6668
),
667
669
(
1998
).
20.
A.
Krishnan
,
T.
Thio
,
T. J.
Kima
,
H. J.
Lezec
,
T. W.
Ebbesen
,
P. A.
Wolff
,
J.
Pendry
,
L.
Martin-Moreno
, and
F. J.
Garcia-Vidal
,
Opt. Commun.
200
(
1-6
),
1
7
(
2001
).
21.
L.
Martin-Moreno
,
F. J.
Garcia-Vidal
,
H. J.
Lezec
,
K. M.
Pellerin
,
T.
Thio
,
J. B.
Pendry
, and
T. W.
Ebbesen
,
Phys. Rev. Lett.
86
(
6
),
1114
1117
(
2001
).
22.
X. L.
Zhong
,
S. G.
Rodrigo
,
L.
Zhang
,
P.
Samori
,
C.
Genet
,
L.
Martin-Moreno
,
J. A.
Hutchison
, and
T. W.
Ebbesen
,
ACS Nano
10
(
4
),
4570
4578
(
2016
).
23.
S. H.
Chang
,
S. K.
Gray
, and
G. C.
Schatz
,
Opt. Express
13
(
8
),
3150
3165
(
2005
).
24.
U.
Fano
,
Phys. Rev.
124
(
6
),
1866
(
1961
).
25.
E. S. H.
Kang
,
H.
Ekinge
, and
M. P.
Jonsson
,
Opt. Mater. Express
9
(
3
),
1404
1415
(
2019
).
26.
K. L.
Xiong
,
G.
Emilsson
, and
A. B.
Dahlin
,
Analyst
141
(
12
),
3803
3810
(
2016
).
27.
C.
Escobedo
,
A. G.
Brolo
,
R.
Gordon
, and
D.
Sinton
, in paper presented at the
Conference on Microfluidics, BioMEMS, and Medical Microsystems IX
,
San Francisco, CA
,
2011
(unpublished).
28.
R.
Gordon
,
D.
Sinton
,
K. L.
Kavanagh
, and
A. G.
Brolo
,
Acc. Chem. Res.
41
(
8
),
1049
1057
(
2008
).
29.
D.
Sinton
,
R.
Gordon
, and
A. G.
Brolo
,
Microfluid. Nanofluid.
4
(
1-2
),
107
116
(
2008
).
30.
J. F.
Masson
,
M. P.
Murray-Methot
, and
L. S.
Live
,
Analyst
135
(
7
),
1483
1489
(
2010
).
31.
T.
Sannomiya
,
O.
Scholder
,
K.
Jefimovs
,
C.
Hafner
, and
A. B.
Dahlin
,
Small
7
(
12
),
1653
1663
(
2011
).
32.
O. A.
Yeshchenko
,
I. S.
Bondarchuk
,
V. S.
Gurin
,
I. M.
Dmitruk
, and
A. V.
Kotko
,
Surf. Sci.
608
,
275
281
(
2013
).
33.
M.
Virk
,
K. L.
Xiong
,
M.
Svedendahl
,
M.
Kall
, and
A. B.
Dahlin
,
Nano Lett.
14
(
6
),
3544
3549
(
2014
).
34.
T.
Sannomiya
,
H.
Saito
,
J.
Junesch
, and
N.
Yamamoto
,
Light: Sci. Appl.
5
,
e16146
(
2016
).
35.
J.
Junesch
and
T.
Sannomiya
,
ACS Appl. Mater. Interfaces
6
(
9
),
6322
6331
(
2014
).
36.
T.
Harumoto
,
T.
Sannomiya
,
Y.
Matsukawa
,
S.
Muraishi
,
J.
Shi
,
Y.
Nakamura
,
H.
Sawada
,
T.
Tanaka
,
Y.
Tanishiro
, and
K.
Takayanagi
,
J. Appl. Phys.
113
(
8
),
084306
(
2013
).
37.
A. B.
Dahlin
,
M.
Mapar
,
K. L.
Xiong
,
F.
Mazzotta
,
F.
Hook
, and
T.
Sannomiya
,
Adv. Opt. Mater.
2
(
6
),
556
564
(
2014
).
38.
N.
Watanabe
,
T.
Kimoto
, and
J.
Suda
,
J. Appl. Phys.
104
(
10
),
106101
(
2008
).
39.
A. C. P.
Rocha
,
J. R.
Silva
,
S. M.
Lima
,
L. A. O.
Nunes
, and
L. H. C.
Andrade
,
Appl. Opt.
55
(
24
),
6639
6643
(
2016
).
40.
CRC Handbook of Chemistry and Physics
, edited by D. R. Lide (
CRC Press, Internet Version
,
Boca Raton, FL
,
2005
).
41.
A. B.
Dahlin
,
T.
Sannomiya
,
R.
Zahn
,
G. A.
Sotiriou
, and
J.
Voros
,
Nano Lett.
11
(
3
),
1337
1343
(
2011
).
42.
A. B.
Dahlin
,
J. O.
Tegenfeldt
, and
F.
Hook
,
Anal. Chem.
78
(
13
),
4416
4423
(
2006
).
43.
T.
Sannomiya
,
P. K.
Sahoo
,
D. I.
Mahcicek
,
H. H.
Solak
,
C.
Hafner
,
D.
Grieshaber
, and
J.
Voros
,
Small
5
(
16
),
1889
1896
(
2009
).
44.
W. F.
Meggers
and
C. G.
Peters
,
Astrophys. J.
50
(
1
),
56
71
(
1919
).
45.
M. S.
Miao
,
P. G.
Moses
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
,
Europhys. Lett.
89
(
5
),
56004
(
2010
).
46.
Y. S.
Wang
,
N. H.
Song
,
X. Y.
Song
,
T. J.
Zhang
,
D. P.
Yang
, and
M.
Li
,
Vacuum
147
,
18
23
(
2018
).
47.
Y. F.
Chen
,
X. M.
Hou
,
Z.
Fang
,
E. H.
Wang
,
J. H.
Chen
, and
G. P.
Bei
,
J. Phys. Chem. C
123
(
9
),
5460
5468
(
2019
).
48.
A.
Abid
,
R.
Bensalem
, and
B. J.
Sealy
,
J. Mater. Sci.
21
(
4
),
1301
1304
(
1986
).
49.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
,
Nat. Mater.
11
(
8
),
667
674
(
2012
).
50.
C.
Clay
and
A.
Hodgson
,
Curr. Opin. Solid State Mater. Sci.
9
(
1-2
),
11
18
(
2005
).
51.
P. A.
Thiel
and
T. E.
Madey
,
Surf. Sci. Rep.
7
(
6-8
),
211
385
(
1987
).
52.
A.
Hodgson
and
S.
Haq
,
Surf. Sci. Rep.
64
(
9
),
381
451
(
2009
).
53.
A. B.
Tesler
,
L.
Chuntonov
,
T.
Karakouz
,
T. A.
Bendikov
,
G.
Haran
,
A.
Vaskevich
, and
I.
Rubinstein
,
J. Phys. Chem. C
115
(
50
),
24642
24652
(
2011
).
54.
A. B.
Tesler
,
B. M.
Maoz
,
Y.
Feldman
,
A.
Vaskevich
, and
I.
Rubinstein
,
J. Phys. Chem. C
117
(
21
),
11337
11346
(
2013
).
55.
Z. Q.
Sun
,
J. G.
Lu
, and
X. P.
Song
,
Vacuum
85
(
2
),
297
301
(
2010
).
56.
J.
Siegel
,
O.
Kvitek
,
O.
Lyutakov
,
A.
Reznickova
, and
V.
Svorcik
,
Vacuum
98
,
100
105
(
2013
).
57.
P.
Dash
,
H.
Rath
,
B. N.
Dash
,
P.
Mallick
,
T.
Basu
,
T.
Som
,
U. P.
Singh
, and
N. C.
Mishra
, in
International Workshop on Functional Materials (IWFM)
(
AIP Conference Proceedings
,
Berhampur, India
,
2011
), Vol. 1461, pp.
214
217
.
58.
J. L.
Plaza
,
S.
Jacke
,
Y.
Chen
, and
R. E.
Palmer
,
Philos. Mag.
83
(
9
),
1137
1142
(
2003
).
59.
D.
Porath
,
Y.
Goldstein
,
A.
Grayevsky
, and
O.
Millo
,
Surf. Sci.
321
(
1-2
),
81
88
(
1994
).
60.
N.
Mancini
and
E.
Rimini
,
Surf. Sci.
22
(
2
),
357
(
1970
).
61.
M. S.
da Rocha
,
K.
Iha
,
A. C.
Faleiros
,
E. J.
Corat
, and
M. E. V.
Suarez-Iha
,
J. Colloid Interface Sci.
208
(
1
),
211
215
(
1998
).

Supplementary Material

You do not currently have access to this content.