In this work, we compare the existing nonpolarizable force fields developed to study the solid or solution phases of hybrid organic-inorganic halide perovskites with the AMOEBA polarizable force field. The aim is to test whether more computationally expensive polarizable force fields like AMOEBA offer better transferability between solution and solid phases, with the ultimate goal being the study of crystal nucleation, growth, and other interfacial phenomena involving these ionic compounds. In the context of hybrid perovskites, AMOEBA force field parameters already exist for several elements in solution, and we decided to leave them unchanged and to only parameterize the missing ones (Pb2+ and CH3NH3+ ions) in order to maximize transferability and avoid overfitting to the specific examples studied here. Overall, we find that AMOEBA yields accurate hydration free energies (within 5%) for typical ionic species while showing the correct ordering of stability for the different crystal polymorphs of CsPbI3 and CH3NH3PbI3. Although the existing parameters do not accurately reproduce all transition temperatures and lattice parameters, AMOEBA offers better transferability between solution and solid states than existing nonpolarizable force fields.

1.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
,
6050
6051
(
2009
).
2.
M. A.
Green
,
Y.
Hishikawa
,
E. D.
Dunlop
,
D. H.
Levi
,
J.
Hohl-Ebinger
,
M.
Yoshita
, and
A. W.
Ho-Baillie
, “
Solar cell efficiency tables (version 53)
,”
Prog. Photovoltaics
27
,
3
12
(
2019
).
3.
M. A.
Green
,
E. D.
Dunlop
,
D. H.
Levi
,
J.
Hohl-Ebinger
,
M.
Yoshita
, and
A. W.
Ho-Baillie
, “
Solar cell efficiency tables (version 54)
,”
Prog. Photovoltaics
27
,
565
575
(
2019
).
4.
I. E.
Castelli
,
J. M.
García-Lastra
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Bandgap calculations and trends of organometal halide perovskites
,”
APL Mater.
2
,
081514
(
2014
).
5.
B.
Zhao
,
S.-F.
Jin
,
S.
Huang
,
N.
Liu
,
J.-Y.
Ma
,
D.-J.
Xue
,
Q.
Han
,
J.
Ding
,
Q.-Q.
Ge
,
Y.
Feng
 et al, “
Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics
,”
J. Am. Chem. Soc.
140
,
11716
11725
(
2018
).
6.
L.
Wang
,
G.
Yuan
,
R.
Duan
,
F.
Huang
,
T.
Wei
,
Z.
Liu
,
J.
Wang
, and
J.
Li
, “
Tunable bandgap in hybrid perovskite CH3NH3Pb(Br3-yXy) single crystals and photodetector applications
,”
AIP Adv.
6
,
045115
(
2016
).
7.
Y.
Han
,
S.
Meyer
,
Y.
Dkhissi
,
K.
Weber
,
J. M.
Pringle
,
U.
Bach
,
L.
Spiccia
, and
Y.-B.
Cheng
, “
Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity
,”
J. Mater. Chem. A
3
,
8139
8147
(
2015
).
8.
M.
Shirayama
,
M.
Kato
,
T.
Miyadera
,
T.
Sugita
,
T.
Fujiseki
,
S.
Hara
,
H.
Kadowaki
,
D.
Murata
,
M.
Chikamatsu
, and
H.
Fujiwara
, “
Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air
,”
J. Appl. Phys.
119
,
115501
(
2016
).
9.
Y.
Tidhar
,
E.
Edri
,
H.
Weissman
,
D.
Zohar
,
G.
Hodes
,
D.
Cahen
,
B.
Rybtchinski
, and
S.
Kirmayer
, “
Crystallization of methyl ammonium lead halide perovskites: Implications for photovoltaic applications
,”
J. Am. Chem. Soc.
136
,
13249
13256
(
2014
).
10.
M. I.
Saidaminov
,
A. L.
Abdelhady
,
B.
Murali
,
E.
Alarousu
,
V. M.
Burlakov
,
W.
Peng
,
I.
Dursun
,
L.
Wang
,
Y.
He
,
G.
Maculan
 et al, “
High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization
,”
Nat. Commun.
6
,
7586
(
2015
).
11.
S. D.
Stranks
,
P. K.
Nayak
,
W.
Zhang
,
T.
Stergiopoulos
, and
H. J.
Snaith
, “
Formation of thin films of organic–inorganic perovskites for high-efficiency solar cells
,”
Angew. Chem., Int. Ed.
54
,
3240
3248
(
2015
).
12.
B. J.
Foley
,
J.
Girard
,
B. A.
Sorenson
,
A. Z.
Chen
,
J. S.
Niezgoda
,
M. R.
Alpert
,
A. F.
Harper
,
D.-M.
Smilgies
,
P.
Clancy
,
W. A.
Saidi
 et al, “
Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives
,”
J. Mater. Chem. A
5
,
113
123
(
2017
).
13.
J. C.
Costa
,
J.
Azevedo
,
L. M.
Santos
, and
A.
Mendes
, “
On the deposition of lead halide perovskite precursors by physical vapor method
,”
J. Phys. Chem. C
121
,
2080
2087
(
2017
).
14.
H.
Zhang
,
X.
Liu
,
J.
Dong
,
H.
Yu
,
C.
Zhou
,
B.
Zhang
,
Y.
Xu
, and
W.
Jie
, “
Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method
,”
Cryst. Growth Des.
17
,
6426
6431
(
2017
).
15.
M. A.
Carignano
,
A.
Kachmar
, and
J.
Hutter
, “
Thermal effects on CH3NH3PbI3 perovskite from ab initio molecular dynamics simulations
,”
J. Phys. Chem. C
119
,
8991
8997
(
2015
).
16.
Y.
Huang
,
W.-J.
Yin
, and
Y.
He
, “
Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3
,”
J. Phys. Chem. C
122
,
1345
1350
(
2018
).
17.
Q.
Hu
,
L.
Zhao
,
J.
Wu
,
K.
Gao
,
D.
Luo
,
Y.
Jiang
,
Z.
Zhang
,
C.
Zhu
,
E.
Schaible
,
A.
Hexemer
 et al, “
In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles
,”
Nat. Commun.
8
,
15688
(
2017
).
18.
Y.
Zhou
,
O. S.
Game
,
S.
Pang
, and
N. P.
Padture
, “
Microstructures of organometal trihalide perovskites for solar cells: Their evolution from solutions and characterization
,”
J. Phys. Chem. Lett.
6
,
4827
4839
(
2015
).
19.
C.
Handley
and
C.
Freeman
, “
A new potential for methylammonium lead iodide
,”
Phys. Chem. Chem. Phys.
19
,
2313
2321
(
2017
).
20.
T.
Hata
,
G.
Giorgi
,
K.
Yamashita
,
C.
Caddeo
, and
A.
Mattoni
, “
Development of a classical interatomic potential for MAPbBr3
,”
J. Phys. Chem. C
121
,
3724
3733
(
2017
).
21.
J. J.
Gutierrez-Sevillano
,
S.
Ahmad
,
S.
Calero
, and
J. A.
Anta
, “
Molecular dynamics simulations of organohalide perovskite precursors: Solvent effects in the formation of perovskite solar cells
,”
Phys. Chem. Chem. Phys.
17
,
22770
22777
(
2015
).
22.
C.
Caddeo
,
M. I.
Saba
,
S.
Meloni
,
A.
Filippetti
, and
A.
Mattoni
, “
Collective molecular mechanisms in the CH3NH3PbI3 dissolution by liquid water
,”
ACS Nano
11
,
9183
9190
(
2017
).
23.
C. G.
Bischak
,
M.
Lai
,
D.
Lu
,
Z.
Fan
,
P.
David
,
D.
Dong
,
H.
Chen
,
A. S.
Etman
,
T.
Lei
,
J.
Sun
 et al, “
Liquid-like interfaces mediate structural phase transitions in lead halide perovskites
,” preprint arXiv:1907.13509 (
2019
).
24.
P.
Ren
,
C.
Wu
, and
J. W.
Ponder
, “
Polarizable atomic multipole-based molecular mechanics for organic molecules
,”
J. Chem. Theory Comput.
7
,
3143
3161
(
2011
).
25.
Q.
Shi
,
S.
Yin
, and
Y.
Wang
, “
DFT-derived atomic multipoles in AMOEBA force field for calculating intermolecular interactions of azabenzenes dimers
,”
Comput. Theor. Chem.
1132
,
35
41
(
2018
).
26.
J. C.
Wu
,
J.-P.
Piquemal
,
R.
Chaudret
,
P.
Reinhardt
, and
P.
Ren
, “
Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field
,”
J. Chem. Theory Comput.
6
,
2059
2070
(
2010
).
27.
M.
Xia
,
Z.
Chai
, and
D.
Wang
, “
Polarizable and non-polarizable force field representations of ferric cation and validations
,”
J. Phys. Chem. B
121
,
5718
5729
(
2017
).
28.
J.-P.
Piquemal
,
L.
Perera
,
G. A.
Cisneros
,
P.
Ren
,
L. G.
Pedersen
, and
T. A.
Darden
, “
Towards accurate solvation dynamics of divalent cations in water using the polarizable AMOEBA force field: From energetics to structure
,”
J. Chem. Phys.
125
,
054511
(
2006
).
29.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based AMOEBA force field for proteins
,”
J. Chem. Theory Comput.
9
,
4046
4063
(
2013
).
30.
H.
Chu
,
X.
Peng
,
Y.
Li
,
Y.
Zhang
, and
G.
Li
, “
A polarizable atomic multipole-based force field for molecular dynamics simulations of anionic lipids
,”
Molecules
23
,
77
(
2018
).
31.
C.
Zhang
,
C.
Lu
,
Z.
Jing
,
C.
Wu
,
J.-P.
Piquemal
,
J. W.
Ponder
, and
P.
Ren
, “
AMOEBA polarizable atomic multipole force field for nucleic acids
,”
J. Chem. Theory Comput.
14
,
2084
2108
(
2018
).
32.
P.
Ren
and
J. W.
Ponder
, “
Polarizable atomic multipole water model for molecular mechanics simulation
,”
J. Phys. Chem. B
107
,
5933
5947
(
2003
).
33.
L.-P.
Wang
,
T.
Head-Gordon
,
J. W.
Ponder
,
P.
Ren
,
J. D.
Chodera
,
P. K.
Eastman
,
T. J.
Martinez
, and
V. S.
Pande
, “
Systematic improvement of a classical molecular model of water
,”
J. Phys. Chem. B
117
,
9956
9972
(
2013
).
34.
M. L.
Laury
,
L.-P.
Wang
,
V. S.
Pande
,
T.
Head-Gordon
, and
J. W.
Ponder
, “
Revised parameters for the AMOEBA polarizable atomic multipole water model
,”
J. Phys. Chem. B
119
,
9423
9437
(
2015
).
35.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 16, Revision A.03,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
36.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
, “
Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements
,”
J. Chem. Phys.
119
,
11113
11123
(
2003
).
37.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis set exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
1052
(
2007
).
38.
P. T.
Van Duijnen
and
M.
Swart
, “
Molecular and atomic polarizabilities: Thole’s model revisited
,”
J. Phys. Chem. A
102
,
2399
2407
(
1998
).
39.
B. T.
Thole
, “
Molecular polarizabilities calculated with a modified dipole interaction
,”
Chem. Phys.
59
,
341
350
(
1981
).
40.
A.
Mattoni
,
A.
Filippetti
,
M.
Saba
, and
P.
Delugas
, “
Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: The role of temperature
,”
J. Phys. Chem. C
119
,
17421
17428
(
2015
).
41.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
42.
See for http://lammps.sandia.gov for LAMMPS, Large-scale atomic/molecular massively parallel simulator.
43.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
44.
M.
Mezei
, “
The finite difference thermodynamic integration, tested on calculating the hydration free energy difference between acetone and dimethylamine in water
,”
J. Chem. Phys.
86
,
7084
7088
(
1987
).
45.
T. C.
Beutler
,
A. E.
Mark
,
R. C.
van Schaik
,
P. R.
Gerber
, and
W. F.
Van Gunsteren
, “
Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations
,”
Chem. Phys. Lett.
222
,
529
539
(
1994
).
46.
M.
Harger
,
D.
Li
,
Z.
Wang
,
K.
Dalby
,
L.
Lagardère
,
J.-P.
Piquemal
,
J.
Ponder
, and
P.
Ren
, “
Tinker-openMM: Absolute and relative alchemical free energies using AMOEBA on GPUs
,”
J. Comput. Chem.
38
,
2047
2055
(
2017
).
47.
L. X.
Dang
, “
Computer simulation studies of ion transport across a liquid/liquid interface
,”
J. Phys. Chem. B
103
,
8195
8200
(
1999
).
48.
A.
Grossfield
,
P.
Ren
, and
J. W.
Ponder
, “
Ion solvation thermodynamics from simulation with a polarizable force field
,”
J. Am. Chem. Soc.
125
,
15671
15682
(
2003
).
49.
R.
Schmid
,
A. M.
Miah
, and
V. N.
Sapunov
, “
A new table of the thermodynamic quantities of ionic hydration: Values and some applications (enthalpy–entropy compensation and born radii)
,”
Phys. Chem. Chem. Phys.
2
,
97
102
(
2000
).
50.
Y.
Marcus
, “
The thermodynamics of solvation of ions. Part 2.—The enthalpy of hydration at 298.15 K
,”
J. Chem. Soc., Faraday Trans. 1
83
,
339
349
(
1987
).
51.
Y.
Marcus
, “
A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes
,”
Biophys. Chem.
51
,
111
127
(
1994
).
52.
Y.
Zhao
and
K.
Zhu
, “
Solution chemistry engineering toward high-efficiency perovskite solar cells
,”
J. Phys. Chem. Lett.
5
,
4175
4186
(
2014
).
53.
E. H.
Byrne
,
P.
Raiteri
, and
J. D.
Gale
, “
Computational insight into calcium–sulfate ion pair formation
,”
J. Phys. Chem. C
121
,
25956
25966
(
2017
).
54.
J. C.
Synnott
and
J. N.
Butler
, “
Chloride reversible electrodes for use in aprotic organic solvents
,”
Anal. Chem.
41
,
1890
1894
(
1969
).
55.
F.
Gaizer
and
M.
Beck
, “
Reaction of mercury (ii) iodide with iodides of post-transition metals
,”
J. Inorg. Nucl. Chem.
29
,
21
32
(
1967
).
56.
A.
Glazer
, “
The classification of tilted octahedra in perovskites
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
28
,
3384
3392
(
1972
).
57.
A.
Marronnier
,
G.
Roma
,
S.
Boyer-Richard
,
L.
Pedesseau
,
J.-M.
Jancu
,
Y.
Bonnassieux
,
C.
Katan
,
C. C.
Stoumpos
,
M. G.
Kanatzidis
, and
J.
Even
, “
Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells
,”
ACS Nano
12
,
3477
3486
(
2018
).
58.
D.
Trots
and
S.
Myagkota
, “
High-temperature structural evolution of caesium and rubidium triiodoplumbates
,”
J. Phys. Chem. Solids
69
,
2520
2526
(
2008
).
59.
R. J.
Sutton
,
M. R.
Filip
,
A. A.
Haghighirad
,
N.
Sakai
,
B.
Wenger
,
F.
Giustino
, and
H. J.
Snaith
, “
Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment
,”
ACS Energy Lett.
3
,
1787
1794
(
2018
).
60.
P.
Whitfield
,
N.
Herron
,
W.
Guise
,
K.
Page
,
Y.
Cheng
,
I.
Milas
, and
M.
Crawford
, “
Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide
,”
Sci. Rep.
6
,
35685
(
2016
).
61.
G.
Sharada
,
P.
Mahale
,
B. P.
Kore
,
S.
Mukherjee
,
M. S.
Pavan
,
C.
De
,
S.
Ghara
,
A.
Sundaresan
,
A.
Pandey
,
T. G.
Row
 et al, “
Is CH3NH3PbI3 polar
,”
J. Phys. Chem. Lett.
7
,
2412
2419
(
2016
).
62.
F.
Jin
,
J.-T.
Ji
,
C.
Xie
,
Y.-M.
Wang
,
S.-N.
He
,
L.
Zhang
,
Z.-R.
Yang
,
F.
Yan
, and
Q.-M.
Zhang
, “
Characterization of structural transitions and lattice dynamics of hybrid organic–inorganic perovskite CH3NH3PbI3
,”
Chin. Phys. B
28
,
076102
(
2019
).
63.
M. T.
Weller
,
O. J.
Weber
,
P. F.
Henry
,
A. M.
Di Pumpo
, and
T. C.
Hansen
, “
Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K
,”
Chem. Commun.
51
,
4180
4183
(
2015
).
64.
J. A.
Rackers
,
Z.
Wang
,
C.
Lu
,
M. L.
Laury
,
L.
Lagardere
,
M. J.
Schnieders
,
J.-P.
Piquemal
,
P.
Ren
, and
J. W.
Ponder
, “
Tinker 8: Software tools for molecular design
,”
J. Chem. Theory Comput.
14
,
5273
5289
(
2018
).
65.
D.
Semrouni
,
W. C.
Isley
 III
,
C.
Clavaguéra
,
J.-P.
Dognon
,
C. J.
Cramer
, and
L.
Gagliardi
, “
Ab initio extension of the AMOEBA polarizable force field to Fe2+
,”
J. Chem. Theory Comput.
9
,
3062
3071
(
2013
).
66.
C.
Liu
,
J.-P.
Piquemal
, and
P.
Ren
, “
AMOEBA+ classical potential for modeling molecular interactions
,”
J. Chem. Theory Comput.
15
(
7
),
4122
4139
(
2019
).
67.
K. P.
Ong
,
T. W.
Goh
,
Q.
Xu
, and
A.
Huan
, “
Structural evolution in methylammonium lead iodide CH3NH3PbI3
,”
J. Phys. Chem. A
119
,
11033
11038
(
2015
).
68.
W.-J.
Yin
,
Y.
Yan
, and
S.-H.
Wei
, “
Anomalous alloy properties in mixed halide perovskites
,”
J. Phys. Chem. Lett.
5
,
3625
3631
(
2014
).

Supplementary Material

You do not currently have access to this content.