A Monte Carlo method is proposed for transforming high-dimensional potential energy surfaces evaluated on discrete grid points into a sum-of-products form, more precisely into a Canonical Polyadic Decomposition form. To this end, a modified existing ansatz based on the alternating least squares method is used, in which numerically exact integrals are replaced with Monte Carlo integrals. This largely reduces the numerical cost by avoiding the evaluation of the potential on all grid points and allows the treatment of surfaces with many degrees of freedom. Calculations on the 15D potential of the protonated water dimer (Zundel cation) in a sum-of-products form are presented and compared to the results obtained in a previous work [M. Schröder and H.-D. Meyer, J. Chem. Phys. 147, 064105 (2017)], where a sum-of-products form of the potential was obtained in the Tucker format.

1.
Molecular Quantum Dynamics
, edited by
F.
Gatti
(
Springer
,
Heidelberg
,
2014
).
2.
E. A.
McCullough
and
R. E.
Wyatt
,
J. Chem. Phys.
51
,
1253
(
1969
).
3.
E. A.
McCullough
and
R. E.
Wyatt
,
J. Chem. Phys.
54
,
3578
(
1971
).
4.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
5.
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
(
1992
).
6.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
7.
H.-D.
Meyer
and
G. A.
Worth
,
Theor. Chem. Acc.
109
,
251
(
2003
).
8.
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H.-D.
Meyer
,
F.
Gatti
, and
G. A.
Worth
(
Wiley -VCH
,
Weinheim
,
2009
).
9.
H.-D.
Meyer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
351
(
2012
).
10.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
119
,
1289
(
2003
).
11.
U.
Manthe
,
J. Chem. Phys.
128
,
164116
(
2008
).
12.
H.
Wang
and
M.
Thoss
,
J. Chem. Phys.
131
,
024114
(
2009
).
13.
O.
Vendrell
and
H.-D.
Meyer
,
J. Chem. Phys.
134
,
044135
(
2011
).
14.
15.
G.
Worth
and
I.
Burghardt
,
Chem. Phys. Lett.
368
,
502
(
2003
).
16.
G. A.
Worth
,
M. A.
Robb
, and
I.
Burghardt
,
Faraday Discuss.
127
,
307
(
2004
).
18.
19.
20.
I.
Oseledes
,
SIAM J. Sci. Comput.
33
,
2295
(
2011
).
21.
H. R.
Larsson
,
J. Chem. Phys.
151
,
204102
(
2019
).
22.
R.
Wodraszka
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
148
,
044115
(
2018
).
23.
P. S.
Thomas
,
T.
Carrington
, Jr.
,
J.
Agarval
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
149
,
064108
(
2018
).
24.
G. A.
Worth
,
J. Chem. Phys.
112
,
8322
(
2000
).
25.
G.
Ávila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
135
,
064101
(
2011
).
26.
R.
Wodraszka
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
146
,
194105
(
2017
).
27.
H.
Larsson
and
D.
Tannor
,
J. Chem. Phys.
147
,
044103
(
2017
).
28.
29.
R.
van Harrevelt
and
U.
Manthe
,
J. Chem. Phys.
123
,
064106
(
2005
).
30.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
104
,
7974
(
1996
).
31.
A.
Jäckle
and
H.-D.
Meyer
,
J. Chem. Phys.
109
,
3772
(
1998
).
32.
F.
Otto
,
J. Chem. Phys.
140
,
014106
(
2014
).
33.
D.
Peláez
and
H.-D.
Meyer
,
J. Chem. Phys.
138
,
014108
(
2013
).
34.
M.
Schröder
and
H.-D.
Meyer
,
J. Chem. Phys.
147
,
064105
(
2017
).
35.
F.
Otto
,
Y.-C.
Chiang
, and
D.
Peláez
,
Chem. Phys.
509
,
116
(
2018
).
36.
S.
Manzhos
,
X.-G.
Wang
,
R.
Dawes
, and
T.
Carrington
, Jr.
,
J. Phys. Chem. A
110
,
5295
(
2006
).
37.
S.
Manzhos
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
125
,
084109
(
2006
).
38.
S.
Manzhos
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
125
,
194105
(
2006
).
39.
W.
Koch
and
D. H.
Zhang
,
J. Chem. Phys.
141
,
021101
(
2014
).
40.
X.
Shen
,
J.
Chen
,
Z.
Zhang
,
K.
Shao
, and
D. H.
Zhang
,
J. Chem. Phys.
143
,
144701
(
2015
).
41.
E.
Pradhan
and
A.
Brown
,
J. Chem. Phys.
144
,
174305
(
2016
).
42.
E.
Pradhan
and
A.
Brown
,
J. Mol. Spectrosc.
330
,
158
(
2016
).
43.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
44.
H.
Rabitz
and
O. F.
Alis
,
J. Math. Chem.
25
,
197
(
1999
).
45.
O.
Vendrell
,
M.
Brill
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
J. Chem. Phys.
130
,
234305
(
2009
).
46.
N. D.
Sidiropoulos
,
L. D.
Lathauwer
,
X.
Fu
,
K.
Huang
,
E. E.
Papalexakis
, and
C.
Faloutsos
,
IEEE Trans. Signal Process.
65
,
3551
(
2017
).
47.
G.
Beylkin
and
M. J.
Mohlenkamp
,
SIAM J. Sci. Comput.
26
,
2133
(
2005
).
48.
P.
Comon
,
X.
Luciani
, and
A. L. F.
de Almeida
,
J. Chemom.
23
,
393
(
2009
).
49.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
50.
T.
Yamamoto
and
S.
Kato
,
J. Chem. Phys.
107
,
6114
(
1997
).
51.
G.
Pasin
,
F.
Gatti
,
C.
Iung
, and
H.-D.
Meyer
,
J. Chem. Phys.
124
,
194304
(
2006
).
52.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
53.
O.
Vendrell
,
F.
Gatti
,
D.
Lauvergnat
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184302
(
2007
).
54.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
127
,
184303
(
2007
).
55.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
J. Chem. Phys.
131
,
034308
(
2009
).
56.
O.
Vendrell
,
F.
Gatti
, and
H.-D.
Meyer
,
Angew. Chem., Int. Ed.
48
,
352
(
2009
).
57.
H.-D.
Meyer
,
F.
Le Quéré
,
C.
Léonard
, and
F.
Gatti
,
Chem. Phys.
329
,
179
(
2006
).
58.
L. J.
Doriol
,
F.
Gatti
,
C.
Iung
, and
H.-D.
Meyer
,
J. Chem. Phys.
129
,
224109
(
2008
).
You do not currently have access to this content.