We investigate the full pair-distribution function of a homogeneous suspension of spherical active Brownian particles interacting by a Weeks–Chandler–Andersen potential in two spatial dimensions. The full pair-distribution function depends on three coordinates describing the relative positions and orientations of two particles, the Péclet number specifying the activity of the particles, and their mean packing density. This five-dimensional function is obtained from Brownian dynamics simulations. We discuss its structure taking into account all of its degrees of freedom. In addition, we present an approximate analytic expression for the product of the full pair-distribution function and the interparticle force. We find that the analytic expression, which is typically needed when deriving analytic models for the collective dynamics of active Brownian particles, is in good agreement with the simulation results. The results of this work can thus be expected to be helpful for the further theoretical investigation of active Brownian particles as well as nonequilibrium statistical physics in general.

1.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
2.
D.
Grossman
,
I. S.
Aranson
, and
E.
Ben Jacob
, “
Emergence of agent swarm migration and vortex formation through inelastic collisions
,”
New J. Phys.
10
,
023036
(
2008
).
3.
M. E.
Cates
and
J.
Tailleur
, “
When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation
,”
Europhys. Lett.
101
,
20010
(
2013
).
4.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
13431
(
2004
).
5.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
A.
Sen
, and
T. E.
Mallouk
, “
From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors
,”
Acc. Chem. Res.
48
,
1938
1946
(
2015
).
6.
Z.
Wu
,
Y.
Wu
,
W.
He
,
X.
Lin
,
J.
Sun
, and
Q.
He
, “
Self-propelled polymer-based multilayer nanorockets for transportation and drug release
,”
Angew. Chem., Int. Ed.
52
,
7000
7003
(
2013
).
7.
C.
Liu
,
X.
Fu
,
L.
Liu
,
X.
Ren
,
C. K. L.
Chau
,
S.
Li
,
L.
Xiang
,
H.
Zeng
,
G.
Chen
,
L.-H.
Tang
,
P.
Lenz
,
X.
Cui
,
W.
Huang
,
T.
Hwa
, and
J.-D.
Huang
, “
Sequential establishment of stripe patterns in an expanding cell population
,”
Science
334
,
238
241
(
2011
).
8.
I. H.
Riedel
,
K.
Kruse
, and
J.
Howard
, “
A self-organized vortex array of hydrodynamically entrained sperm cells
,”
Science
309
,
300
303
(
2005
).
9.
R. E.
Goldstein
, “
Green algae as model organisms for biological fluid dynamics
,”
Annu. Rev. Fluid Mech.
47
,
343
375
(
2015
).
10.
A.
Cavagna
and
I.
Giardina
, “
Bird flocks as condensed matter
,”
Annu. Rev. Condens. Matter Phys.
5
,
183
207
(
2014
).
11.
I. D.
Couzin
,
J.
Krause
,
N. R.
Franks
, and
S. A.
Levin
, “
Effective leadership and decision-making in animal groups on the move
,”
Nature
433
,
513
516
(
2005
).
12.
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
T.
Vicsek
, “
Formation of complex bacterial colonies via self-generated vortices
,”
Phys. Rev. E
54
,
1791
1801
(
1996
).
13.
C.
Dombrowski
,
L.
Cisneros
,
S.
Chatkaew
,
R. E.
Goldstein
, and
J. O.
Kessler
, “
Self-concentration and large-scale coherence in bacterial dynamics
,”
Phys. Rev. Lett.
93
,
098103
(
2004
).
14.
J.
Tailleur
and
M. E.
Cates
, “
Statistical mechanics of interacting run-and-tumble bacteria
,”
Phys. Rev. Lett.
100
,
218103
(
2008
).
15.
N. P.
Barry
and
M. S.
Bretscher
, “
Dictyostelium amoebae and neutrophils can swim
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
11376
11380
(
2010
).
16.
F. J.
Ndlec
,
T.
Surrey
,
A. C.
Maggs
, and
S.
Leibler
, “
Self-organization of microtubules and motors
,”
Nature
389
,
305
308
(
1997
).
17.
S.
Camalet
,
F.
Jülicher
, and
J.
Prost
, “
Self-organized beating and swimming of internally driven filaments
,”
Phys. Rev. Lett.
82
,
1590
1593
(
1999
).
18.
T.
Surrey
,
F.
Nédélec
,
S.
Leibler
, and
E.
Karsenti
, “
Physical properties determining self-organization of motors and microtubules
,”
Science
292
,
1167
1171
(
2001
).
19.
K.
Kruse
,
J. F.
Joanny
,
F.
Jülicher
,
J.
Prost
, and
K.
Sekimoto
, “
Asters, vortices, and rotating spirals in active gels of polar filaments
,”
Phys. Rev. Lett.
92
,
078101
(
2004
).
20.
F.
Backouche
,
L.
Haviv
,
D.
Groswasser
, and
A.
Bernheim-Groswasser
, “
Active gels: Dynamics of patterning and self-organization
,”
Phys. Biol.
3
,
264
273
(
2006
).
21.
V.
Schaller
,
C.
Weber
,
C.
Semmrich
,
E.
Frey
, and
A. R.
Bausch
, “
Polar patterns of driven filaments
,”
Nature
467
,
73
77
(
2010
).
22.
A.
Bricard
,
J.-B.
Caussin
,
N.
Desreumaux
,
O.
Dauchot
, and
D.
Bartolo
, “
Emergence of macroscopic directed motion in populations of motile colloids
,”
Nature
503
,
95
98
(
2013
).
23.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
, “
Living crystals of light-activated colloidal surfers
,”
Science
339
,
936
940
(
2013
).
24.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
, “
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles
,”
Phys. Rev. Lett.
110
,
238301
(
2013
).
25.
J.
Yan
,
M.
Han
,
J.
Zhang
,
C.
Xu
,
E.
Luijten
, and
S.
Granick
, “
Reconfiguring active particles by electrostatic imbalance
,”
Nat. Mater.
15
,
1095
1099
(
2016
).
26.
R.
Niu
,
T.
Palberg
, and
T.
Speck
, “
Self-assembly of colloidal molecules due to self-generated flow
,”
Phys. Rev. Lett.
119
,
028001
(
2017
).
27.
S.
Ramaswamy
, “
The mechanics and statistics of active matter
,”
Annu. Rev. Condens. Matter Phys.
1
,
323
345
(
2010
).
28.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
, “
Active Brownian particles. From individual to collective stochastic dynamics
,”
Eur. Phys. J. Spec. Top.
202
,
1
162
(
2012
).
29.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
1189
(
2013
).
30.
J.
Bialké
,
T.
Speck
, and
H.
Löwen
, “
Active colloidal suspensions: Clustering and phase behavior
,”
J. Non-Cryst. Solids
407
,
367
375
(
2015
).
31.
A. M.
Menzel
, “
Tuned, driven, and active soft matter
,”
Phys. Rep.
554
,
1
45
(
2015
).
32.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
33.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
34.
G. S.
Redner
,
M. F.
Hagan
, and
A.
Baskaran
, “
Structure and dynamics of a phase-separating active colloidal fluid
,”
Phys. Rev. Lett.
110
,
055701
(
2013
).
35.
J.
Bialké
,
H.
Löwen
, and
T.
Speck
, “
Microscopic theory for the phase separation of self-propelled repulsive disks
,”
Europhys. Lett.
103
,
30008
(
2013
).
36.
J.
Stenhammar
,
D.
Marenduzzo
,
R. J.
Allen
, and
M. E.
Cates
, “
Phase behaviour of active Brownian particles: The role of dimensionality
,”
Soft Matter
10
,
1489
1499
(
2014
).
37.
M. E.
Cates
and
J.
Tailleur
, “
Motility-induced phase separation
,”
Annu.Rev. Condens. Matter Phys.
6
,
219
244
(
2015
).
38.
T. F. F.
Farage
,
P.
Krinninger
, and
J. M.
Brader
, “
Effective interactions in active Brownian suspensions
,”
Phys. Rev. E
91
,
042310
(
2015
).
39.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
, 4th ed. (
Elsevier Academic Press
,
Oxford
,
2009
).
40.
A.
van Blaaderen
and
P.
Wiltzius
, “
Real-space structure of colloidal hard-sphere glasses
,”
Science
270
,
1177
1179
(
1995
).
41.
M. D.
Carbajal-Tinoco
,
F.
Castro-Román
, and
J. L.
Arauz-Lara
, “
Static properties of confined colloidal suspensions
,”
Phys. Rev. E
53
,
3745
3749
(
1996
).
42.
R.
Hughes
, “
An introduction to colloids
,” in
Colloid Science: Principles, Methods and Applications
, 2nd ed., edited by
T.
Cosgrove
(
Wiley
,
Chichester
,
2010
), Chap. 1, pp.
1
21
.
43.
C. R.
Iacovella
,
R. E.
Rogers
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Pair interaction potentials of colloids by extrapolation of confocal microscopy measurements of collective suspension structure
,”
J. Chem. Phys.
133
,
164903
(
2010
).
44.
A. L.
Thorneywork
,
R.
Roth
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
, “
Communication: Radial distribution functions in a two-dimensional binary colloidal hard sphere system
,”
J. Chem. Phys.
140
,
161106
(
2014
).
45.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
, 2nd ed. (
Oxford University Press
,
Oxford
,
2017
).
46.
T.
Morita
and
K.
Hiroike
, “
A new approach to the theory of classical fluids. I
,”
Prog. Theor. Phys.
23
,
1003
1027
(
1960
).
47.
J. K.
Percus
, “
The pair distribution function in classical statistical mechanics
,” in
The Equilibrium Theory of Classical Fluids
, edited by
H. L.
Frisch
and
J. L.
Lebowitz
(
Benjamin
,
New York
,
1964
), Chap. II: Series expansions and integral equations, pp.
II–33
II–170
.
48.
G.
Stell
, “
Cluster expansions for classical systems in equilibrium
,” in
The Equilibrium Theory of Classical Fluids
, edited by
H. L.
Frisch
and
J. L.
Lebowitz
(
Benjamin
,
New York
,
1964
), Chap. II: Series expansions and integral equations, pp.
II-171
II-267
.
49.
U. M. B.
Marconi
,
M.
Paoluzzi
, and
C.
Maggi
, “
Effective potential method for active particles
,”
Mol. Phys.
114
,
2400
2410
(
2016
).
50.
M.
Rein
and
T.
Speck
, “
Applicability of effective pair potentials for active Brownian particles
,”
Eur. Phys. J. E
39
,
84
(
2016
).
51.
A.
Härtel
,
D.
Richard
, and
T.
Speck
, “
Three-body correlations and conditional forces in suspensions of active hard disks
,”
Phys. Rev. E
97
,
012606
(
2018
).
52.
G.
Pessot
,
H.
Löwen
, and
A. M.
Menzel
, “
Binary pusher-puller mixtures of active microswimmers and their collective behaviour
,”
Mol. Phys.
116
,
3401
3408
(
2018
).
53.
F. J.
Schwarzendahl
and
M. G.
Mazza
, “
Hydrodynamic interactions dominate the structure of active swimmers’ pair distribution functions
,”
J. Chem. Phys.
150
,
184902
(
2019
).
54.
R.
Wittkowski
,
J.
Stenhammar
, and
M. E.
Cates
, “
Nonequilibrium dynamics of mixtures of active and passive colloidal particles
,”
New J. Phys.
19
,
105003
(
2017
).
55.
J.
Bickmann
and
R.
Wittkowski
, “
Predictive local field theory for interacting active Brownian spheres in two spatial dimensions
,”
J. Phys.: Condens. Matter
32
,
214001
(
2020
).
56.
T.
Speck
,
A. M.
Menzel
,
J.
Bialké
, and
H.
Löwen
, “
Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles
,”
J. Chem. Phys.
142
,
224109
(
2015
).
57.
S.
Steffenoni
,
G.
Falasco
, and
K.
Kroy
, “
Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions
,”
Phys. Rev. E
95
,
052142
(
2017
).
58.
H.
Reinken
,
S. H. L.
Klapp
,
M.
Bär
, and
H.
Sebastian
, “
Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions
,”
Phys. Rev. E
97
,
022613
(
2018
).
59.
H. H.
Wensink
,
H.
Löwen
,
M.
Marechal
,
A.
Härtel
,
R.
Wittkowski
,
U.
Zimmermann
,
A.
Kaiser
, and
A. M.
Menzel
, “
Differently shaped hard body colloids in confinement: From passive to active particles
,”
Eur. Phys. J. Spec. Top.
222
,
3023
3037
(
2013
).
60.
T.
Speck
, “
Collective behavior of active Brownian particles: From microscopic clustering to macroscopic phase separation
,”
Eur. Phys. J. Spec. Top.
225
,
2287
2299
(
2016
).
61.
S. A.
Mallory
,
C.
Valeriani
, and
A.
Cacciuto
, “
An active approach to colloidal self-assembly
,”
Annu. Rev. Phys. Chem.
69
,
59
79
(
2018
).
62.
T.
Speck
,
J.
Bialké
,
A. M.
Menzel
, and
H.
Löwen
, “
Effective Cahn-Hilliard equation for the phase separation of active Brownian particles
,”
Phys. Rev. Lett.
112
,
218304
(
2014
).
63.
J.
Stenhammar
,
R.
Wittkowski
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Activity-induced phase separation and self-assembly in mixtures of active and passive particles
,”
Phys. Rev. Lett.
114
,
018301
(
2015
).
64.
R.
Wittkowski
and
H.
Löwen
, “
Dynamical density functional theory for colloidal particles with arbitrary shape
,”
Mol. Phys.
109
,
2935
2943
(
2011
).
65.
J.
Bickmann
and
R.
Wittkowski
, “
Collective dynamics of active Brownian particles in three spatial dimensions: A predictive field theory
” (unpublished).
66.
J.
Bickmann
,
S.
Bröker
,
J.
Jeggle
, and
R.
Wittkowski
, “
Chirality in active systems: Suppressed phase separation of interacting Brownian circle swimmers
” (unpublished).
67.
N.
de Macedo Biniossek
,
H.
Löwen
,
T.
Voigtmann
, and
F.
Smallenburg
, “
Static structure of active Brownian hard disks
,”
J. Phys.: Condens. Matter
30
,
074001
(
2018
).
68.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
69.
J. T.
Siebert
,
F.
Dittrich
,
F.
Schmid
,
K.
Binder
,
T.
Speck
, and
P.
Virnau
, “
Critical behavior of active Brownian particles
,”
Phys. Rev. E
98
,
030601
(
2018
).
70.
P.
Digregorio
,
D.
Levis
,
A.
Suma
,
L. F.
Cugliandolo
,
G.
Gonnella
, and
I.
Pagonabarraga
, “
Full phase diagram of active Brownian disks: From melting to motility-induced phase separation
,”
Phys. Rev. Lett.
121
,
098003
(
2018
).
71.
R.
Wittkowski
,
A.
Tiribocchi
,
J.
Stenhammar
,
R. J.
Allen
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Scalar ϕ4 field theory for active-particle phase separation
,”
Nat. Commun.
5
,
4351
(
2014
).
72.
A.
Tiribocchi
,
R.
Wittkowski
,
D.
Marenduzzo
, and
M. E.
Cates
, “
Active model H: Scalar active matter in a momentum-conserving fluid
,”
Phys. Rev. Lett.
115
,
188302
(
2015
).

Supplementary Material

You do not currently have access to this content.