A fully microscopic model of the doping-dependent exciton and trion linewidths in the absorption spectra of monolayer transition metal dichalcogenides in the low temperature and low-doping regime is explored. The approach is based on perturbation theory and avoids the use of phenomenological parameters. In the low-doping regime, we find that the trion linewidth is relatively insensitive to doping levels, while the exciton linewidth increases monotonically with doping. On the other hand, we argue that the trion linewidth shows a somewhat stronger temperature dependence. The magnitudes of the linewidths are likely to be masked by phonon scattering for T ≥ 20 K in encapsulated samples in the low-doping regime. We discuss the breakdown of perturbation theory, which should occur at relatively low-doping levels and low temperatures. Our work also paves the way toward understanding a variety of related scattering processes, including impact ionization and Auger scattering in clean 2D samples.

1.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
2.
A.
Splendiani
,
L.
Sun
,
Y.
Zhang
,
T.
Li
,
J.
Kim
,
C.-Y.
Chim
,
G.
Galli
, and
F.
Wang
,
Nano Lett.
10
,
1271
(
2010
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
4.
K. S.
Novoselov
,
A. K.
Geim
,
S.
Morozov
,
D.
Jiang
,
M.
Katsnelson
,
I.
Grigorieva
,
S.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
5.
K. P.
Loh
,
Q.
Bao
,
G.
Eda
, and
M.
Chhowalla
,
Nat. Chem.
2
,
1015
(
2010
).
6.
G.
Wang
,
A.
Chernikov
,
M. M.
Glazov
,
T. F.
Heinz
,
X.
Marie
,
T.
Amand
, and
B.
Urbaszek
,
Rev. Mod. Phys.
90
,
021001
(
2018
).
7.
T. C.
Berkelbach
and
D. R.
Reichman
,
Annu. Rev. Condens. Matter Phys.
9
,
379
(
2018
).
8.
Z.
Cai
,
B.
Liu
,
X.
Zou
, and
H.-M.
Cheng
,
Chem. Rev.
118
,
6091
(
2018
).
9.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
,
Nat. Chem.
5
,
263
(
2013
).
10.
N.
Flöry
,
A.
Jain
,
P.
Bharadwaj
,
M.
Parzefall
,
T.
Taniguchi
,
K.
Watanabe
, and
L.
Novotny
,
Appl. Phys. Lett.
107
,
123106
(
2015
).
11.
S.
Memaran
,
N. R.
Pradhan
,
Z.
Lu
,
D.
Rhodes
,
J.
Ludwig
,
Q.
Zhou
,
O.
Ogunsolu
,
P. M.
Ajayan
,
D.
Smirnov
,
A. I.
Fernández-Domínguez
 et al.,
Nano Lett.
15
,
7532
(
2015
).
12.
S.
Wi
,
M.
Chen
,
D.
Li
,
H.
Nam
,
E.
Meyhofer
, and
X.
Liang
,
Appl. Phys. Lett.
107
,
062102
(
2015
).
13.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
,
699
(
2012
).
14.
D.
Ovchinnikov
,
A.
Allain
,
Y.-S.
Huang
,
D.
Dumcenco
, and
A.
Kis
,
ACS Nano
8
,
8174
(
2014
).
15.
D.
Lembke
,
S.
Bertolazzi
, and
A.
Kis
,
Acc. Chem. Res.
48
,
100
(
2015
).
16.
D. Y.
Qiu
,
H.
Felipe
, and
S. G.
Louie
,
Phys. Rev. Lett.
111
,
216805
(
2013
).
17.
F.
Wu
,
F.
Qu
, and
A. H.
MacDonald
,
Phys. Rev. B
91
,
075310
(
2015
).
18.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
,
Phys. Rev. B
88
,
045318
(
2013
).
19.
K. F.
Mak
,
K.
He
,
C.
Lee
,
G. H.
Lee
,
J.
Hone
,
T. F.
Heinz
, and
J.
Shan
,
Nat. Mater.
12
,
207
(
2013
).
20.
T.
Cheiwchanchamnangij
and
W. R.
Lambrecht
,
Phys. Rev. B
85
,
205302
(
2012
).
21.
A.
Chernikov
,
T. C.
Berkelbach
,
H. M.
Hill
,
A.
Rigosi
,
Y.
Li
,
O. B.
Aslan
,
D. R.
Reichman
,
M. S.
Hybertsen
, and
T. F.
Heinz
,
Phys. Rev. Lett.
113
,
076802
(
2014
).
22.
K.
He
,
N.
Kumar
,
L.
Zhao
,
Z.
Wang
,
K. F.
Mak
,
H.
Zhao
, and
J.
Shan
,
Phys. Rev. Lett.
113
,
026803
(
2014
).
23.
G.
Plechinger
,
P.
Nagler
,
J.
Kraus
,
N.
Paradiso
,
C.
Strunk
,
C.
Schüller
, and
T.
Korn
,
Phys. Status Solidi RRL
9
,
457
(
2015
).
24.
M.
Currie
,
A.
Hanbicki
,
G.
Kioseoglou
, and
B.
Jonker
,
Appl. Phys. Lett.
106
,
201907
(
2015
).
25.
A.
Mitioglu
,
P.
Plochocka
,
J.
Jadczak
,
W.
Escoffier
,
G.
Rikken
,
L.
Kulyuk
, and
D.
Maude
,
Phys. Rev. B
88
,
245403
(
2013
).
26.
G.
Moody
,
C. K.
Dass
,
K.
Hao
,
C.-H.
Chen
,
L.-J.
Li
,
A.
Singh
,
K.
Tran
,
G.
Clark
,
X.
Xu
,
G.
Berghäuser
 et al.,
Nat. Commun.
6
,
8315
(
2015
).
27.
M.
Selig
,
G.
Berghäuser
,
A.
Raja
,
P.
Nagler
,
C.
Schüller
,
T. F.
Heinz
,
T.
Korn
,
A.
Chernikov
,
E.
Malic
, and
A.
Knorr
,
Nat. Commun.
7
,
13279
(
2016
).
28.
O. A.
Ajayi
,
J. V.
Ardelean
,
G. D.
Shepard
,
J.
Wang
,
A.
Antony
,
T.
Taniguchi
,
K.
Watanabe
,
T. F.
Heinz
,
S.
Strauf
,
X.
Zhu
 et al.,
2D Mater.
4
,
031011
(
2017
).
29.
F.
Cadiz
,
E.
Courtade
,
C.
Robert
,
G.
Wang
,
Y.
Shen
,
H.
Cai
,
T.
Taniguchi
,
K.
Watanabe
,
H.
Carrere
,
D.
Lagarde
 et al.,
Phys. Rev. X
7
,
021026
(
2017
).
30.
S.
Shree
,
A.
George
,
T.
Lehnert
,
C.
Neumann
,
M.
Benelajla
,
C.
Robert
,
X.
Marie
,
K.
Watanabe
,
T.
Taniguchi
,
U.
Kaiser
 et al.,
2D Mater.
7
,
015011
(
2019
).
31.
D.
Christiansen
,
M.
Selig
,
G.
Berghäuser
,
R.
Schmidt
,
I.
Niehues
,
R.
Schneider
,
A.
Arora
,
S. M.
de Vasconcellos
,
R.
Bratschitsch
,
E.
Malic
 et al.,
Phys. Rev. Lett.
119
,
187402
(
2017
).
32.
K.
Shinokita
,
X.
Wang
,
Y.
Miyauchi
,
K.
Watanabe
,
T.
Taniguchi
, and
K.
Matsuda
,
Adv. Funct. Mater.
29
,
1900260
(
2019
).
33.
Y.
Miyauchi
,
S.
Konabe
,
F.
Wang
,
W.
Zhang
,
A.
Hwang
,
Y.
Hasegawa
,
L.
Zhou
,
S.
Mouri
,
M.
Toh
,
G.
Eda
 et al.,
Nat. Commun.
9
,
2598
(
2018
).
34.
B. R.
Carvalho
,
L. M.
Malard
,
J. M.
Alves
,
C.
Fantini
, and
M. A.
Pimenta
,
Phys. Rev. Lett.
114
,
136403
(
2015
).
35.
M.
Sidler
,
P.
Back
,
O.
Cotlet
,
A.
Srivastava
,
T.
Fink
,
M.
Kroner
,
E.
Demler
, and
A.
Imamoglu
,
Nat. Phys.
13
,
255
(
2017
).
36.
P.-F.
Li
and
Z.-W.
Wang
,
J. Appl. Phys.
123
,
204308
(
2018
).
37.
Y.-W.
Chang
and
D. R.
Reichman
,
Phys. Rev. B
99
,
125421
(
2019
).
38.
D. K.
Efimkin
and
A. H.
MacDonald
,
Phys. Rev. B
95
,
035417
(
2017
).
39.
M.
Klawunn
and
A.
Recati
,
Phys. Rev. A
84
,
033607
(
2011
).
40.
R.
Schmidt
,
T.
Enss
,
V.
Pietilä
, and
E.
Demler
,
Phys. Rev. A
85
,
021602
(
2012
).
41.
M. M.
Parish
and
J.
Levinsen
,
Phys. Rev. A
87
,
033616
(
2013
).
42.
A.
Lherbier
,
X.
Blase
,
Y.-M.
Niquet
,
F.
Triozon
, and
S.
Roche
,
Phys. Rev. Lett.
101
,
036808
(
2008
).
43.
G.
Ramon
,
A.
Mann
, and
E.
Cohen
,
Phys. Rev. B
67
,
045323
(
2003
).
44.
J.
Henriques
,
G.
Ventura
,
C.
Fernandes
, and
N.
Peres
,
J. Phys.: Condens. Matter
32
,
025304
(
2019
).
45.
N. S.
Rytova
,
Vestn. Mosk. Univ. Fiz. Astron.
3
,
30
(
1967
).
46.
L.
Keldysh
,
J. Exp. Theor. Phys. Lett.
29
,
658
(
1979
).
47.
S.
Chandrasekhar
,
Astrophys. J.
100
,
176
(
1944
).
48.
N. P.
Sandler
and
C. R.
Proetto
,
Phys. Rev. B
46
,
7707
(
1992
).
49.
50.
T. C.
Berkelbach
, “
Two-dimensional screening for doped semiconductors
” (unpublished).
51.
G. F.
Giuliani
and
J. J.
Quinn
,
Phys. Rev. B
26
,
4421
(
1982
).
52.
G.
Strinati
,
Riv. Nuovo Cimento
11
,
1
(
1988
).
53.
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. B
62
,
4927
(
2000
).
54.
W.
Hanke
and
L.
Sham
,
Phys. Rev. Lett.
43
,
387
(
1979
).
55.
L. X.
Benedict
,
Phys. Rev. B
66
,
193105
(
2002
).
56.
M. M.
Glazov
and
A.
Chernikov
,
Phys. Status Solidi B
255
,
1800216
(
2018
).
57.
B.
Scharf
,
D.
Van Tuan
,
I.
Žutić
, and
H.
Dery
,
J. Phys.: Condens. Matter
31
,
203001
(
2019
).
58.
Y.-C.
Chang
,
S.-Y.
Shiau
, and
M.
Combescot
,
Phys. Rev. B
98
,
235203
(
2018
).
59.
K.
Andersen
,
S.
Latini
, and
K. S.
Thygesen
,
Nano Lett.
15
,
4616
(
2015
).
60.
L.
Cavalcante
,
A.
Chaves
,
B.
Van Duppen
,
F.
Peeters
, and
D.
Reichman
,
Phys. Rev. B
97
,
125427
(
2018
).
61.
P. J.
Gielisse
,
S. S.
Mitra
,
J. N.
Plendl
,
R. D.
Griffis
,
L. C.
Mansur
,
R.
Marshall
, and
E. A.
Pascoe
,
Phys. Rev.
155
,
1039
(
1967
).
62.
F. A.
Rasmussen
and
K. S.
Thygesen
,
J. Phys. Chem. C
119
,
13169
(
2015
).
63.
G.
Astakhov
,
V.
Kochereshko
,
D.
Yakovlev
,
W.
Ossau
,
J.
Nürnberger
,
W.
Faschinger
, and
G.
Landwehr
,
Phys. Rev. B
62
,
10345
(
2000
).
64.
T.
Smoleński
,
O.
Cotlet
,
A.
Popert
,
P.
Back
,
Y.
Shimazaki
,
P.
Knüppel
,
N.
Dietler
,
T.
Taniguchi
,
K.
Watanabe
,
M.
Kroner
 et al.,
Phys. Rev. Lett.
123
,
097403
(
2019
).
65.
E.
Courtade
,
M.
Semina
,
M.
Manca
,
M.
Glazov
,
C.
Robert
,
F.
Cadiz
,
G.
Wang
,
T.
Taniguchi
,
K.
Watanabe
,
M.
Pierre
 et al.,
Phys. Rev. B
96
,
085302
(
2017
).
66.
Z.
Ye
,
L.
Waldecker
,
E. Y.
Ma
,
D.
Rhodes
,
A.
Antony
,
B.
Kim
,
X.-X.
Zhang
,
M.
Deng
,
Y.
Jiang
,
Z.
Lu
 et al.,
Nat. Commun.
9
,
3718
(
2018
).
67.

Recent unpublished experimental results by K. Wagner, E. Wietek, and J. Zipfel in the group of Alexey Chernikov have given access to linewidths as a function of doping in the low-doping regime in clean, encapsulated WSe2 at 5 K. While the data fill in the upper end of the doping regime we present in our Fig. 1, they are in reasonable agreement with our results, including monotonically increasing (with doping level n) exciton lines of width 5–10 meV, a somewhat larger growth for the 2s line as compared to 1s, and a nearly flat trion line that initially slightly decreases with increasing n. We thank Alexey Chernikov for sharing these results to us after the submission of this work.

68.
C.
Fey
,
P.
Schmelcher
,
A.
Imamoglu
, and
R.
Schmidt
, arXiv:1912.04873 (
2019
).
69.
L.
Huang
and
T. D.
Krauss
,
Phys. Rev. Lett.
96
,
057407
(
2006
).
70.
F.
Wang
,
Y.
Wu
,
M. S.
Hybertsen
, and
T. F.
Heinz
,
Phys. Rev. B
73
,
245424
(
2006
).
71.
F.
Hu
,
C.
Yin
,
H.
Zhang
,
C.
Sun
,
W. W.
Yu
,
C.
Zhang
,
X.
Wang
,
Y.
Zhang
, and
M.
Xiao
,
Nano Lett.
16
,
6425
(
2016
).
72.
S. G.
Johnson
, Cubature (Multi-dimensional integration),
2017
, http://ab-initio.mit.edu/wiki/index.php/Cubature_(Multi-dimensional_integration).
You do not currently have access to this content.