Hard carbon (HC) is considered as a negative electrode material for potassium-ion batteries, but it suffers from significant irreversible capacity loss at the first discharge cycle. Here, we investigated the possible reasons of this capacity loss with a combination of in situ AFM and various ex situ TEM techniques (high resolution TEM and high angle annular dark field scanning TEM imaging, and STEM-EELS and STEM-EDX spectroscopic mapping) targeting the electrode/electrolyte interphase formation process in the carbonate-based electrolyte with and without vinylene carbonate (VC) as an additive. The studied HC consists of curved graphitic layers arranged into short packets and round cages, the latter acting as traps for K+ ions causing low Coulombic efficiency between cycling. Our comparative study of solid electrolyte interphase (SEI) formation in the carbonate-based electrolyte with and without the VC additive revealed that in the pristine electrolyte, the SEI consists mostly of inorganic components, whereas adding VC introduces a polymeric organic component to the SEI, increasing its elasticity and stability against fracturing upon HC expansion/contraction during electrochemical cycling. Additionally, significant K+ loss occurs due to Na+ for K+ exchange in Na-carboxymethyl cellulose used as a binder. These findings reflect the cumulative impact of the internal HC structure, SEI properties, and binder nature into the electrochemical functional properties of the HC-based anodes for K-ion batteries.
Skip Nav Destination
Article navigation
21 May 2020
Research Article|
May 20 2020
Origins of irreversible capacity loss in hard carbon negative electrodes for potassium-ion batteries
Special Collection:
Interfacial Structure and Dynamics for Electrochemical Energy Storage
Natalia S. Katorova
;
Natalia S. Katorova
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology
, Moscow 143026, Russian Federation
Search for other works by this author on:
Sergey Yu. Luchkin;
Sergey Yu. Luchkin
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology
, Moscow 143026, Russian Federation
Search for other works by this author on:
Dmitry P. Rupasov;
Dmitry P. Rupasov
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology
, Moscow 143026, Russian Federation
Search for other works by this author on:
Artem M. Abakumov;
Artem M. Abakumov
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology
, Moscow 143026, Russian Federation
Search for other works by this author on:
Keith J. Stevenson
Keith J. Stevenson
a)
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology
, Moscow 143026, Russian Federation
a)Author to whom correspondence should be addressed: k.stevenson@skoltech.ru
Search for other works by this author on:
a)Author to whom correspondence should be addressed: k.stevenson@skoltech.ru
Note: This paper is part of the JCP Special Topic on Interfacial Structure and Dynamics for Electrochemical Energy Storage.
J. Chem. Phys. 152, 194704 (2020)
Article history
Received:
January 31 2020
Accepted:
April 27 2020
Citation
Natalia S. Katorova, Sergey Yu. Luchkin, Dmitry P. Rupasov, Artem M. Abakumov, Keith J. Stevenson; Origins of irreversible capacity loss in hard carbon negative electrodes for potassium-ion batteries. J. Chem. Phys. 21 May 2020; 152 (19): 194704. https://doi.org/10.1063/5.0003257
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.