Hard carbon (HC) is considered as a negative electrode material for potassium-ion batteries, but it suffers from significant irreversible capacity loss at the first discharge cycle. Here, we investigated the possible reasons of this capacity loss with a combination of in situ AFM and various ex situ TEM techniques (high resolution TEM and high angle annular dark field scanning TEM imaging, and STEM-EELS and STEM-EDX spectroscopic mapping) targeting the electrode/electrolyte interphase formation process in the carbonate-based electrolyte with and without vinylene carbonate (VC) as an additive. The studied HC consists of curved graphitic layers arranged into short packets and round cages, the latter acting as traps for K+ ions causing low Coulombic efficiency between cycling. Our comparative study of solid electrolyte interphase (SEI) formation in the carbonate-based electrolyte with and without the VC additive revealed that in the pristine electrolyte, the SEI consists mostly of inorganic components, whereas adding VC introduces a polymeric organic component to the SEI, increasing its elasticity and stability against fracturing upon HC expansion/contraction during electrochemical cycling. Additionally, significant K+ loss occurs due to Na+ for K+ exchange in Na-carboxymethyl cellulose used as a binder. These findings reflect the cumulative impact of the internal HC structure, SEI properties, and binder nature into the electrochemical functional properties of the HC-based anodes for K-ion batteries.

1.
J. T.
Lee
,
N.
Nitta
,
J.
Benson
,
A.
Magasinski
,
T. F.
Fuller
, and
G.
Yushin
,
Carbon
52
,
388
(
2013
).
2.
T.
Nordh
,
R.
Younesi
,
M.
Hahlin
,
R. F.
Duarte
,
C.
Tengstedt
,
D.
Brandell
, and
K.
Edström
,
J. Phys. Chem. C
120
,
3206
(
2016
).
3.
N.
Weadock
,
N.
Varongchayakul
,
J.
Wan
,
S.
Lee
,
J.
Seog
, and
L.
Hu
,
Nano Energy
2
,
713
(
2013
).
4.
G. V.
Zhuang
,
K.
Xu
,
T. R.
Jow
, and
P. N.
Ross
, Jr.
,
Electrochem. Solid State Lett.
7
,
A224
(
2004
).
5.
F.
Kong
,
R.
Kostecki
,
G.
Nadeau
,
X.
Song
,
K.
Zaghib
,
K.
Kinoshita
, and
F.
McLarnon
,
J. Power Sources
97-98
,
58
(
2001
).
6.
S.
Chattopadhyay
,
A. L.
Lipson
,
H. J.
Karmel
,
J. D.
Emery
,
T. T.
Fister
,
P. A.
Fenter
,
M. C.
Hersam
, and
M. J.
Bedzyk
,
Chem. Mater.
24
,
3038
(
2012
).
7.
S. S.
Zhang
,
K.
Xu
, and
T. R.
Jow
,
Electrochim. Acta
51
,
1636
(
2006
).
8.
E.
Peled
and
S.
Menkin
,
J. Electrochem. Soc.
164
,
A1703
(
2017
).
9.
W.
Zhang
,
Y.
Liu
, and
Z.
Guo
,
Sci. Adv.
5
,
eaav7412
(
2019
).
10.
V. A.
Nikitina
,
S. M.
Kuzovchikov
,
S. S.
Fedotov
,
N. R.
Khasanova
,
A. M.
Abakumov
, and
E. V.
Antipov
,
Electrochim. Acta
258
,
814
(
2017
).
11.
K.
Kubota
,
M.
Dahbi
,
T.
Hosaka
,
S.
Kumakura
, and
S.
Komaba
,
Chem. Rec.
18
,
459
(
2018
).
12.
N.
Xiao
,
W. D.
McCulloch
, and
Y.
Wu
,
J. Am. Chem. Soc.
139
,
9475
(
2017
).
13.
N. S.
Katorova
,
S. S.
Fedotov
,
D. P.
Rupasov
,
N. D.
Luchinin
,
B.
Delattre
,
Y.-M.
Chiang
,
A. M.
Abakumov
, and
K. J.
Stevenson
,
ACS Appl. Energy Mater.
2
,
6051
(
2019
).
14.
Z.
Jian
,
Z.
Xing
,
C.
Bommier
,
Z.
Li
, and
X.
Ji
,
Adv. Energy Mater.
6
,
1501874
(
2016
).
15.
Z.
Jian
,
S.
Hwang
,
Z.
Li
,
A. S.
Hernandez
,
X.
Wang
,
Z.
Xing
,
D.
Su
, and
X.
Ji
,
Adv. Funct. Mater.
27
,
1700324
(
2017
).
16.
Z.
Tai
,
Q.
Zhang
,
Y.
Liu
,
H.
Liu
, and
S.
Dou
,
Carbon
123
,
54
(
2017
).
17.
L.
Wang
,
J.
Yang
,
J.
Li
,
T.
Chen
,
S.
Chen
,
Z.
Wu
,
J.
Qiu
,
B.
Wang
,
P.
Gao
,
X.
Niu
, and
H.
Li
,
J. Power Sources
409
,
24
(
2019
).
18.
W.
Zhang
,
J.
Mao
,
S.
Li
,
Z.
Chen
, and
Z.
Guo
,
J. Am. Chem. Soc.
139
,
3316
(
2017
).
19.
S.
Komaba
,
T.
Itabashi
,
B.
Kaplan
,
H.
Groult
, and
N.
Kumagai
,
Electrochem. Commun.
5
,
962
(
2003
).
20.
Y.
Yamada
,
Y.
Iriyama
,
T.
Abe
, and
Z.
Ogumi
,
Langmuir
25
,
12766
(
2009
).
21.
H.
Ota
,
K.
Shima
,
M.
Ue
, and
J.-i.
Yamaki
,
Electrochim. Acta
49
,
565
(
2004
).
22.
W.
Zhao
,
Y.
Ji
,
Z.
Zhang
,
M.
Lin
,
Z.
Wu
,
X.
Zheng
,
Q.
Li
, and
Y.
Yang
,
Curr. Opin. Electrochem.
6
,
84
(
2017
).
23.
W.
Zhang
,
W. K.
Pang
,
V.
Sencadas
, and
Z.
Guo
,
Joule
2
,
1534
(
2018
).
24.
J.
Huang
,
X.
Lin
,
H.
Tan
, and
B.
Zhang
,
Adv. Energy Mater.
8
,
1703486
(
2018
).
25.
X.
Bie
,
K.
Kubota
,
T.
Hosaka
,
K.
Chihara
, and
S.
Komaba
,
J. Mater. Chem. A
5
,
4325
(
2017
).
26.
H.
Buqa
,
A.
Würsig
,
J.
Vetter
,
M. E.
Spahr
,
F.
Krumeich
, and
P.
Novák
,
J. Power Sources
153
,
385
(
2006
).
27.
C.-C.
Chang
,
S.-H.
Hsu
,
Y.-F.
Jung
, and
C.-H.
Yang
,
J. Power Sources
196
,
9605
(
2011
).
28.
D.
Aurbach
,
K.
Gamolsky
,
B.
Markovsky
,
Y.
Gofer
,
M.
Schmidt
, and
U.
Heider
,
Electrochim. Acta
47
,
1423
(
2002
).
29.
A.
Wang
,
S.
Kadam
,
H.
Li
,
S.
Shi
, and
Y.
Qi
,
npj Comput. Mater.
4
,
15
(
2018
).
30.
Y.
Qian
,
C.
Schultz
,
P.
Niehoff
,
T.
Schwieters
,
S.
Nowak
,
F. M.
Schappacher
, and
M.
Winter
,
J. Power Sources
332
,
60
(
2016
).
31.
Y.
Liu
,
H.
Dai
,
L.
Wu
,
W.
Zhou
,
L.
He
,
W.
Wang
,
W.
Yan
,
Q.
Huang
,
L.
Fu
, and
Y.
Wu
,
Adv. Energy Mater.
9
,
1901379
(
2019
).
32.
X.
Wu
,
D. P.
Leonard
, and
X.
Ji
,
Chem. Mater.
29
,
5031
(
2017
).
33.
Z.
Jian
,
W.
Luo
, and
X.
Ji
,
J. Am. Chem. Soc.
137
,
11566
(
2015
).
34.
H.
Yamamoto
,
S.
Muratsubaki
,
K.
Kubota
,
M.
Fukunishi
,
H.
Watanabe
,
J.
Kim
, and
S.
Komaba
,
J. Mater. Chem. A
6
,
16844
(
2018
).
35.
A. L.
Michan
,
B. S.
Parimalam
,
M.
Leskes
,
R. N.
Kerber
,
T.
Yoon
,
C. P.
Grey
, and
B. L.
Lucht
,
Chem. Mater.
28
,
8149
(
2016
).
36.
T.
Hosaka
,
S.
Muratsubaki
,
K.
Kubota
,
H.
Onuma
, and
S.
Komaba
,
J. Phys. Chem. Lett.
10
,
3296
(
2019
).
37.
F. A.
Soto
,
Y.
Ma
,
J. M.
Martinez de la Hoz
,
J. M.
Seminario
, and
P. B.
Balbuena
,
Chem. Mater.
27
,
7990
(
2015
).
38.
D.
Lemordant
,
W.
Zhang
,
F.
Ghamouss
,
D.
Farhat
,
A.
Darwiche
,
L.
Monconduit
,
R.
Dedryvère
,
H.
Martinez
,
S.
Cadra
, and
B.
Lestriez
,
Advanced Fluoride-Based Materials for Energy Conversion
(
Elsevier
(
2015
), p.
173
.
39.
Y.
Sun
,
G.
Zheng
,
Z. W.
Seh
,
N.
Liu
,
S.
Wang
,
J.
Sun
,
H. R.
Lee
, and
Y.
Cui
,
Chem
1
,
287
(
2016
).
40.
A.
Bard
,
L.
Faulkner
,
J.
Leddy
, and
C.
Zoski
,
Electrochemical Methods, Fundamentals and Applications
(
Wiley
,
New York
,
1980
), Vol. 2, p.
1
.
41.
M. R.
Nellist
,
Y.
Chen
,
A.
Mark
,
S.
Gödrich
,
C.
Stelling
,
J.
Jiang
,
R.
Poddar
,
C.
Li
,
R.
Kumar
,
G.
Papastavrou
,
M.
Retsch
,
B. S.
Brunschwig
,
Z.
Huang
,
C.
Xiang
, and
S. W.
Boettcher
,
Nanotechnology
28
,
095711
(
2017
).
42.
L.
Ding
,
Z.
Song
,
P.
Wu
,
J.
Cheng
,
C.
Chen
,
Y.
Niu
, and
B.
Li
,
Int. J. Electrochem. Sci.
14
,
585
(
2019
).
43.
M.
Lanz
,
E.
Lehmann
,
R.
Imhof
,
I.
Exnar
, and
P.
Novák
,
J. Power Sources
101
,
177
(
2001
).
44.
V.
Simone
,
A.
Boulineau
,
A.
de Geyer
,
D.
Rouchon
,
L.
Simonin
, and
S.
Martinet
,
J. Energy Chem.
25
,
761
(
2016
).
45.
C.
Chen
,
Z.
Wang
,
B.
Zhang
,
L.
Miao
,
J.
Cai
,
L.
Peng
,
Y.
Huang
,
J.
Jiang
,
Y.
Huang
,
L.
Zhang
, and
J.
Xie
,
Energy Storage Mater.
8
,
161
(
2017
).
46.
L.
Martin
,
H.
Martinez
,
M.
Ulldemolins
,
B.
Pecquenard
, and
F.
Le Cras
,
Solid State Ionics
215
,
36
(
2012
).
47.
Y.
Lei
,
D.
Han
,
J.
Dong
,
L.
Qin
,
X.
Li
,
D.
Zhai
,
B.
Li
,
Y.
Wu
, and
F.
Kang
,
Energy Storage Mater.
24
,
319
(
2020
).
48.
H.
Ota
,
Y.
Sakata
,
A.
Inoue
, and
S.
Yamaguchi
,
J. Electrochem. Soc.
151
,
A1659
(
2004
).
49.
J.
Li
,
N.
Zhuang
,
J.
Xie
,
Y.
Zhu
,
H.
Lai
,
W.
Qin
,
M. S.
Javed
,
W.
Xie
, and
W.
Mai
,
ACS Appl. Mater. Interfaces
11
,
15581
(
2019
).

Supplementary Material

You do not currently have access to this content.